Skip to main content
Log in

Autonomous circular and radial motions of the nucleus inPleurenterium tumidum and their relation to cytoskeletal elements and the plasma membrane

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

InPleurenterium tumidum the nucleus leaves its central position at the end of cell development and moves centrifugally towards the cortical cytoplasm of the isthmus area. It passes between the chloroplast lobes and starts to perform circular motions along the cell wall ring of the isthmus independently from other cell organelles and cytoplasmic streaming. This autonomous nuclear motion is a unique phenomenon in plant cells which is reported here for the first time. One turn of the nucleus which may occur either clockwise or counter-clockwise lasts an average of 60 minutes. The velocity of circular nuclear motion lies between 0.03 and 0.08 μm per second and increases with increasing number of nuclear turns. The nucleus undergoes at least 12 but sometimes up to 70 turns and may change its direction of motion several times. When circular nuclear motion is finished the nucleus migrates centripetally towards the cell center where the next mitosis takes place.

Ultrastructural studies demonstrate that a distinct arrangement of the plasma membrane forming a ring-shaped fold together with the adjacent “isthmus system of microtubules” (IS) serves as a hoop-like track for the nucleus during the stage of circular motion. The nucleus moves along this track by surrounding it in a deep furrow which develops parallel to its longitudinal axis at its cell wall facing side. The spatial arrangement of the plasma membrane fold and the nuclear furrow are only present during the stage of circular nuclear motion. No actin filaments seem to be involved in the nuclear circulations since the nucleus continues its circular motions after cytochalasin B (CB) treatment even at concentrations which arrest cytoplasmic streaming. Amiprophos-methyl (APM) leads to an inhibition of circular nuclear motion which resumes when the APM solution is removed. Microtubules appear to be primarily responsible also for both the radial nuclear motions as well as the anchoring of the nucleus in its central position. The meaning of circular and radial nuclear motions for thePleurenterium cell is not yet clear, a relation between the nuclear behavior and the inner cell architecture is discussed and compared to that of other desmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acton E (1916) Studies on nuclear division in the desmids. 1.Hyalotheca dissiliens. Ann Bot 30: 379–383

    Google Scholar 

  • Bassels AR, Kuehnert ChC, Miller JH (1981) Nuclear migration and asymmetric cell division inOnoclea sensibilis spores: An ultrastructural and cytochemical study. Am J Bot 68 (3): 350–360

    Google Scholar 

  • Brown RC, Lemmon BE (1981) Aperture development in spores of the mossTrematodon longicollis Mx. Protoplasma 106: 273–287

    Google Scholar 

  • — — (1982) Ultrastructure of meiosis in the mossRhynchostegium serrulatum. I. Prophasic microtubules and spindle dynamics. Protoplasma 110: 23–32

    Google Scholar 

  • — — (1983) Microtubule organization and morphogenesis in young spores of the mossTetraphis pellucida Hedw. Protoplasma 116: 115–124

    Google Scholar 

  • Carter N (1920) Studies on the chloroplast of desmids. IV. Ann Bot 34: 305–319

    Google Scholar 

  • Conrad PA, Steucek GL, Hepler PK (1986) Bud formation inFunaria: Organelle redistribution following cytokinin treatment. Protoplasma 131: 211–223

    Google Scholar 

  • Dickinson HG, Sheldon JM (1984) A radial system of microtubules extending between the nuclear envelope and the plasma membrane during early male haplophase in flowering plants. Planta 161: 86–90

    Google Scholar 

  • Dowding ES (1958) Nuclear streaming inGelasinospora. Can J Microbiol 4: 295–301

    Google Scholar 

  • Engler A, Prantl K (1927) Die natürlichen Pflanzenfamilien.Engler A (ed) Bd. 3, Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Filner Ph, Yadav NS (1979) Intracellular movements. In:Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, New series, vol 7. Springer, Berlin Heidelberg New York, pp 95–113

    Google Scholar 

  • Galatis B, Apostolakos P, Katsaros Ch (1983) Microtubules and their organizing centers in differentiating guard cells ofAdiantum capillus veneris. Protoplasma 115: 176–192

    Google Scholar 

  • Geitler L (1961) Spontaneous partial rotations and oscillations of the protoplasma in Coleochaeten and otherChlorophyceae. Am J Bot 48: 738–741

    Google Scholar 

  • — (1976) Spontane Rotation and Oszillation des Chromatophors und Cytoplasmas bei zwei Spirotaenia-Arten. Protoplasma 88: 265–278

    Google Scholar 

  • Girbardt M (1968) Ultrastructure and dynamics of the moving nucleus. In:Miller PL (ed) Aspects of cell motility. 22nd Symp Exp Biol. Cambridge University Press, Cambridge, pp 249–259

    Google Scholar 

  • Gunning BES, Hughes JE, Hardham AR (1978) Formative and proliferative cell division, cell differentiation, and developmental changes in the meristem ofAzolla roots. Planta 143: 121–144

    Google Scholar 

  • Heath IB, Heath MC (1978) Microtubules and organelle movements in the rust fungusUromyces phaseoli var.vignae. Europ J Cell Biol 16: 393–411

    Google Scholar 

  • Hepler PK, Palevitz BA (1974) Microtubules and microfilaments. Ann Rev Plant Physiol 25: 309–362

    Google Scholar 

  • Höfler K, Fetzmann E, Diskus A (1957) Algen-Kleingesellschaften aus den Mooren des Eggstädter Seengebietes im Bayerischen Alpenvorland. Verh Zool Bot Ges (Wien) 97: 53–86

    Google Scholar 

  • Kallio P (1951) The significance of nuclear quantity in the genusMicrasterias. Ann Soz “Vanamo” 24: 1–120

    Google Scholar 

  • — (1963) The effect of ultraviolet radiation and some chemicals on morphogenesis inMicrasterias. Ann Acad Sci fenn Ser. A 70: 1–39

    Google Scholar 

  • Kiermayer O (1964) Untersuchungen über die Morphogenese und Zellwandbildung beiMicrasterias denticulata Bréb. Protoplasma 59: 97–132

    Google Scholar 

  • — (1966) Septumbildung und Cytomorphogenese vonMicrasterias denticulata nach Einwirkung von Äthanol. Planta 71: 305–313

    Google Scholar 

  • Kiermayer O (1968 a) the distribution of microtubules in differentiating cells ofMicrasterias denticulata Bréb. Planta 83: 223–236

    Google Scholar 

  • — (1968 b) Hemmung der Kernund Chloroplastenmigration vonMicrasterias durch Colchizin. Naturwissenschaften 55: 299–300

    Google Scholar 

  • — (1970 a) Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese vonMicrasterias denticulata Bréb. 1. Allgemeiner Überblick. Protoplasma 69: 97–132

    Google Scholar 

  • — (1970 b) Causal aspects of cytomorphogenesis inMicrasterias. Ann NY Acad Sci 175: 686–701

    Google Scholar 

  • — (1972) Beeinflussung der postmitotischen Kernmigration vonMicrasterias denticulata Bréb. durch das Herbizid Trifluralin. Protoplasma 75: 421–426

    Google Scholar 

  • — (1981) Cytoplasmic basis of morphogenesis inMicrasterias. In:Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York

    Google Scholar 

  • —,Fedtke C (1977) Strong anti-microtubule action of amiprophosmethyl (APM) inMicrasterias. Protoplasma 92: 163–166

    Google Scholar 

  • —,Hepler PK (1970) Hemmung der Kernmigration von Jochalgen (Micrasterias) durch Isopropyl-N-phenylcarbamat. Naturwissenschaften 5: 252

    Google Scholar 

  • —,Jarosch R (1960) Vorkommen vonPleurenterium tumidum in einem Mühlviertler Hochmoor. Verh Zool Bot Ges (Wien) 100: 198–199

    Google Scholar 

  • —,Url GW (1980) Protoplasmaströmung. Publ Wiss Film Sekt Biol 13, Nr 4/C 1295: 1–13

    Google Scholar 

  • Koop HU, Kiermayer O (1980) Protoplasmic Streaming in the giant unicellular green algaAcetabularia mediterranea. II. Differential sensitivity of movement systems to substances acting on microfilaments and microtubules. Protoplasma 102: 295–306

    Google Scholar 

  • Lanners HN (1980) Pronuclei ofHeliophyra erhardi Mathes during conjugation and their differential association with coated and uncoated microtubules. J Cell Sci 45: 245–255

    Google Scholar 

  • Marchant HJ (1978) Microtubules associated with the plasma membrane isolated from protoplasts of the green algaMougeotia. Exp Cell 115: 25–30

    Google Scholar 

  • McKerracher LJ, Heath IB (1985) Microtubules around migrating nuclei in conventionally-fixed and freeze-substituted cells. Protoplasma 125: 162–172

    Google Scholar 

  • Meindl U (1983) Cytoskeletal control of nuclear migration and anchoring in developing cells ofMicrasterias denticulata and the change caused by the anti-microtubular herbicide amiprophosmethyl (APM). Protoplasma 118: 75–90

    Google Scholar 

  • — (1985) Aberrant nuclear migration and microtubule arrangement in a defect mutant cell ofMicrasterias thomasiana. Protoplasma 126: 74–90

    Google Scholar 

  • — (1986 a)Pleurenterium tumidum (Desmidiaceae) — Circuläre Bewegungen des Zellkernes und ihre Beziehung zum Cytoskelett. Bundesinstitut für den Wiss. Film, Vienna, Film PTf 2085

    Google Scholar 

  • - (1986 b) Zellentwicklung und Ultrastruktur der DesmidiaceePleurenterium tumidum. In preparation

  • —,Kiermayer O (1981) Biologischer Test zur Bestimmung der Antimikrotubuli-Wirkung verschiedener Stoffe mit Hilfe der GrünalgeMicrasterias denticulata. Mikroskopie 38: 325–336

    Google Scholar 

  • — — (1982) Über die Kern- und Chloroplastenmigration vonMicrasterias denticulata Bréb. I. Licht- und elektronenmikro- skopische Untersuchungen der Kernmigration nach Behandlung mit Antimikrotubuli-Substanzen. Phyton 22 (1): 115–135

    Google Scholar 

  • —,Url WG, Kiermayer O (1986) Elektronenmikroskopische Methodik — Präparation der GrünalgeMicrasterias. Publ Wiss Film, Göttingen, Sekt Biol Ser 18, Nr 22 Film D 1588: 1–14

    Google Scholar 

  • Menzel D (1986) Visualization of cytoskeletal changes through the life cycle inAcetabularia. Protoplasma 134: 30–42

    Google Scholar 

  • Migula W (1911) Die Desmidiaceen. Franckh'sche Verlagshandlung, Stuttgart

    Google Scholar 

  • Morejohn LC, Fosket DE (1984) Inhibition of plant microtubule polymerisation in vitro by the phosphoric amide herbicide amiprophos-methyl. Science 224: 874–876

    Google Scholar 

  • Nakai Y, Ushiyama R (1978) Fine structure of shiitake,Lentinus edodes. VI. Cytoplasmic microtubules in relation to nuclear movement. Can J Bot 56: 1206–1211

    Google Scholar 

  • Ott DW, Brown RM, Jr (1972) Light and electron microscopical observations on mitosis inVaucheria litorea Hofman ex. C. Agardh. Br phycol J 7: 361–374

    Google Scholar 

  • — — (1974) Developmental cytology of the genusVaucheria. I. Organization of the vegetative filament. Br phycol J 9: 111–126

    Google Scholar 

  • Pickett-Heaps JD (1972) Cell division inCosmarium botrytis. J Phycol 8 (4): 343–360

    Google Scholar 

  • —,Fowke LC (1970) Mitosis, cytokinesis and cell elongation in the desmidClosterium littorale. J Phycol 6 (2): 189–215

    Google Scholar 

  • Raudaskoski M (1972) Occurence of microtubules in the hyphae ofSchizophyllum commune during intercellular nuclear migration. Arch Mikrobiol 86: 91–100

    Google Scholar 

  • —,Koltin Y (1973) Ultrastructural aspects of a mutant ofSchizophyllum commune with continuous nuclear migration. J Bacteriology 116 (2): 981–988

    Google Scholar 

  • Schlösser UG (1982) List of strains. Ber Deutsch Bot Ges 95: 181–276

    Google Scholar 

  • Schmiedel G, Reiss HD, Schnepf E (1981) Associations between membranes and microtubules during mitosis and cytokinesis in caulonema tip cells of the mossFunaria hygrometrica. Protoplasma 108: 173–190

    Google Scholar 

  • —,Schnepf E (1979) Side branch formation and orientation in the caulonema of the moss,Funaria hygrometrica: Normal development and fine structure. Protoplasma 100: 367–383

    Google Scholar 

  • Schnepf E, Heinzmann J (1980) Nuclear movement, tip growth and colchicine effects inLagenisma coscinodisci (Drebes) (Oomycetes, Lagenidiales). Biochem Physiol Pflanzen 175: 67–76

    Google Scholar 

  • Treiblmayr K, Pohlhammer K (1974) Die Verwendung eines Mikrofiltergerätes bei der Fixierung und Entwässerung kleiner biologischer Objekte der Elektronenmikroskopie. Mikroskopie 30: 229–233

    Google Scholar 

  • Url T (1986) Licht- und elektronenmikroskopische Untersuchungen anEuastrum oblongum mit besonderer Berücksichtigung der Formbildung. Thesis, Salzburg

  • Vogelmann Th C, Bassels AR, Miller JH (1981) Effects of microtubule inhibitors on nuclear migration and rhizoid differentiation in germinating fern spores (Onoclea sensibilis). Protoplasma 109: 295–316

    Google Scholar 

  • —,Miller JH (1980) Nuclear migration in germinating spores ofOnoclea sensibilis: The path and kinetics of movement. Amer J Bot 67 (5): 648–652

    Google Scholar 

  • Wada M, O'Brien TP (1975) Observations on the structure of the protonema ofAdiantum capillus-veneris L. undergoing cell division following white-light irradiation. Planta 126: 213–227

    Google Scholar 

  • West W, West GS (1912) A monograph of the BritishDesmidiaceae. Vol IV. Johnson Reprint Corporation, New York London

    Google Scholar 

  • Woodcock CLF (1971) The anchoring of nuclei by cytoplasmic microtubules inAcetabularia. J Cell Sci 8: 611–621

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meindl, U. Autonomous circular and radial motions of the nucleus inPleurenterium tumidum and their relation to cytoskeletal elements and the plasma membrane. Protoplasma 135, 50–66 (1986). https://doi.org/10.1007/BF01277052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277052

Keywords

Navigation