Skip to main content
Log in

Improved structural preservation in freeze-substituted sporidia ofUstilago avenae—a comparison with low-temperature embedding

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

In the present study the cellular fine structure of freeze-substituted sporidia of the phytopathogenic fungusUstilago avenae is investigated by means of thin-section electron microscopy. A conventional embedding method using Spurr's low viscosity resin is compared with the recently developed methacrylate mixtures Lowicryl® K 4 M and HM 20 resin. Generally, freeze-substitution yields improved preservation of fine structural details of the fungus compared to previously applied conventional fixation methods. Using double fixation during freeze-substitution prior to conventional embedding the fungal membrane system (plasmalemma, endoplasmic reticulum), organelles (mitochondria, nucleus etc.) and other cytoplasmic features (ribosomes, cytoskeleton) appear well resolved and smoothly contoured. Aldehyde fixed and Lowicryl embedded sporidia ofU. avenae resemble these double fixed fungal specimens fairly closely. The complete low-temperature preparation produces visualization of distinct cellular details although contrast reversal of cellular membranes (er, mitochondria etc.) is sometimes observed. In particular, fine structure resolution is enhanced in Lowicryl HM 20 embedded fungal cells. This is due also to significant improvement in staining of the cellular membranes, cytoskeleton (microfilaments and microtubules) and Golgi apparatus-like areas, using tannic acid. In case of the fungusU. avenae, freeze-substitution in combination with mild glutaraldehyde fixation and final low-temperature embedding in HM 20 resin prove suitable for improved preservation of cellular ultrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cw:

cell wall

cy:

cytoplasm

FS:

freeze-substitution

FS-A:

GA/OsO4 freeze-substitution and Spurr's LV-embedding

FS-B:

GA freeze-substitution and Lowicryl K 4 M LT-embedding

FS-C:

GA freeze-substitution and Lowicryl HM 20 LT-embedding

go:

Golgi apparatus-like body

GA:

glutaraldehyde

g:

glycogen deposit

l:

lipid droplet

LT:

low temperature

Lowicryl LT-embedding:

Lowicryl low-temperature embedding

Lowicryl LT-resin:

Lowicryl low-temperature resin

MeOH:

methanol

mf:

microfilament

mt:

microtubule

m:

mitochondrion

mvb:

multivesicular body

ne:

nuclear envelope

np:

nuclear pore

npl:

nucleoplasm

nu:

nucleolus

n:

nucleus

OsO4 :

osmium tetroxide

pl:

plasmalemma

pr:

polyribosomes

Pb-citrate:

Reynolds' lead citrate

r:

ribosome

RT:

room temperature

rer:

rough endoplasmic reticulum

Spurr's LV-embedding:

Spurr's low viscosity embedding

Spurr's LV-resin:

Spurr's low viscosity resin

t:

tonoplast

Uac:

uranyl acetate

v:

vacuole

References

  • Acetarin JD,Carlemalm E (1985) Lowicryl HM 23 and K 11 M: Two new embedding resins for very low temperature embedding. Published by the Chemische Werke Lowi GmbH. Lowicryl® Letters no. 3: 2–4

  • Armbruster BL, Carlemalm E, Chiovetti R, Garavito RM, Hobot JA, Kellenberger E, Villiger W (1982) Specimen preparation for electron microscopy using low temperature embedding resins. J Microsc (London) 126: 77–85

    Google Scholar 

  • Carlemalm E, Kellenberger E (1982) The reproducible observation of unstained embedded cellular material in thin sections: visualization of an integral membrane protein by a new mode of imaging for STEM. EMBO J 1: 63–67

    Google Scholar 

  • —,Garavito RM, Villinger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc (London) 126: 123–143

    Google Scholar 

  • Dahmen H, Hobot JA (1986)In vivo ultrastructural analysis ofErysiphe graminis haustoria and subcuticular stroma ofVenturia inaequalis using cryosubstitution. Protoplasma 131: 92–102

    Google Scholar 

  • Elder HY, Gray CC, Jardine AG, Chapman JN, Biddlecombe WH (1982) Optimum conditions for cryoquenching of small tissue blocks in liquid coolants. J Microsc (London) 126: 45–61

    Google Scholar 

  • Escaig T (1982) New instruments which facilitate rapid freezing at 83 K and 6 K. J Microsc (London) 126: 221–226

    Google Scholar 

  • Garavito RM, Carlemalm E, Colliex C, Villiger W (1982) Septate junction ultrastructure as visualized in unstained and stained preparations. J Ultrastruct Res 80: 344–353

    Google Scholar 

  • Harvey DMR (1982) Freeze-substitution. J Microsc (London) 127: 209–221

    Google Scholar 

  • Heath JB, Rethoret K, Arsenault AL, Ottensmeyer FP (1985) Improved preservation of the form and contents of wall vesicles and the Golgi apparatus in freeze-substituted hyphae ofSaprolegnia. Protoplasma 128: 81–93

    Google Scholar 

  • Hippe S (1984a) Electron microscopic investigations on the cytology ofUstilago avenae influenced by the systemic fungicides triadimefon, nuarimol, and imazalil-nitrate: a thin-section and freeze-fracture study. Pestic Biochem Physiol 21: 170–183

    Google Scholar 

  • — (1984 b) Rapid cryofixation by a simple propane-double-jet device adapted to a modified specimen table of the BIOETCH 2005. Mikroskopie 41: 289–301

    Google Scholar 

  • — (1985) Ultrastructure of haustoria ofErysiphe graminis f. sp.hordei preserved by freeze-substitution. Protoplasma 129: 52–61

    Google Scholar 

  • Hoch HG, Howard RJ (1980) Ultrastructure of freeze-substituted hyphac of the basidiomyceteLaetisaria arvalis. Protoplasma 103: 281–297

    Google Scholar 

  • —,Staples RC (1983) Ultrastruclural organization of the non-differentiated uredospore germling ofUromyces phaseoli varietytypica. Mycologia 75: 795–824

    Google Scholar 

  • Howard RJ, Aist JR (1979) Hyphal tip cell ultrastructure of the fungusFusarium: improved preservation by freeze-substitution. J Ultrastruct Res 66: 224–234

    Google Scholar 

  • Humbel B,Marti Th,Müller M (1983) Improved structural preservation by combining freeze substitution and low temperature embedding. In:Pfefferkorn G (ed) BEDO. vol 16. Antwerpen, pp 585–594

  • -Müller M (1984) Freeze-subsitution and low temperature embedding. In:Scanady A,Röhlich P,Szabo D (eds) Electron microscopy 1984, vol 3. Proceedings of the 8th European Congress on Electron Microscopy. Budapest, pp 1789–1798

  • Hunziker EB, Herrmann W, Schenk RK, Müller M, Moor H (1984) Cartilage ultrastructure after high pressure freezing, freeze-substitution, and low temperature embedding. I. Chondrocyte ultrastructure-implications for the theories of mineralization and vascular invastion. J Cell Biol 98: 267–276

    Google Scholar 

  • Kellenberger E, Carlemalm E, Villiger W, Roth J, Garavito RM (1980) Low denaturation embedding for electron microscopy of thin sections. Published by the Chemische Werke Lowi GmbH (Beuthener Straße 2, Postfach 1660, D-8264 Waldkraiburg, Federal Republic of Germany), pp 1–59

    Google Scholar 

  • Knoll G, Oebel G, Plattner H (1982) A simple sandwich-cryogen-jet procedure with high cooling rates for cryofixation of biological materials in the native state. Protoplasma 111: 161–176

    Google Scholar 

  • Läuchli A, Spurr AR, Wittkopp RW (1970) Electron probe analysis of freeze-substituted, epoxy resin embedded tissue for ion transport studies in plants. Planta 95: 341–350

    Google Scholar 

  • Malhotra SK (1972) On the structure of membranes of mitochondria. Sub-Cell Biochem 1: 171–177

    Google Scholar 

  • Müller M, Meister N, Moor H (1980a) Freezing in a propane jet and its application in freeze fracturing. Mikroskopie 36: 129–140

    Google Scholar 

  • -Marti T,Kriz S (1980 b) Improved structural preservation by freeze substitution. In:Scanady A.Röhlich P,Szabo D (eds) Electron microscopy, 1984. vol 2. Proceedings of the 7th European Congress on Electron Microscopy, Leiden, pp 720–721

  • O'Donnell KL, McLaughlin DJ (1984) Ultrastructure of meiosis inUstilago maydis. Mycologia 76: 468–485

    Google Scholar 

  • Ornberg R, Reese T (1980) A freeze substitution method for localizing divalent cations: examples from secretory systems. Fed Proc 39: 2802–2808

    Google Scholar 

  • Pscheid P, Schudt C, Plattner H (1981) Cryofixation of mono-layer cell cultures for freeze-fracturing without chemical pre-treatments. J Microsc (London) 121: 149–167

    Google Scholar 

  • Ramberg JE, McLaughlin DJ (1980) Ultrastructural study of promycelial development and basidiospore initiation inUstilago maydis. Can J Bot 58: 1548–1561

    Google Scholar 

  • Rey MEC, Noble JP (1984) Subcellular localization by immunocytochemistry of the extracellular protease produced byNectria galligena Bres. in infected apple tissue. Physiol Plant Pathol 25: 323–336

    Google Scholar 

  • Riehle U, Hoechli M (1973) The theory and technique of high pressure freezing. In:Benedetti EL, Favard P (eds) Freeze-etching, techniques and applications. Société Française de Microscopie Electronique, Paris, pp 32–61

    Google Scholar 

  • Robb J (1972) Ultrastructure ofUstilago hordei (Pers.) Lagerh. I. Pregermination development in hydrating teliospores. Can J Bot 50: 1253–1261

    Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29: 663–671

    Google Scholar 

  • — (1983) Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem 31: 987–999

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Google Scholar 

  • Steinbrecht RA (1982) Experiments on freezing damage with freeze substitution using moth antaennae as test objects. J Microsc (London) 125: 187–192

    Google Scholar 

  • Uphoff C, Raber BT, Cole TB (1984) Tannic acid in routine staining of thin sections. J Electron Microsc Tech 1: 419–420

    Google Scholar 

  • Weibull C, Villinger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution ofAcholeplasma laidlawii—cells for electron microscopy. J Microsc (London) 134: 213–216

    Google Scholar 

  • —,Christiansson A (1986) Extraction of proteins and membrane lipids during low temperature embedding of biological material for electron microscopy. J Microsc (London) 142: 79–86

    Google Scholar 

  • Westphal C, Frösch D (1984) Electron-phasecontrast imaging of unstained biological materials, embedded in a water-soluble melamine resin. J Ultrastruct Res 88: 282–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hippe, S., Hermanns, M. Improved structural preservation in freeze-substituted sporidia ofUstilago avenae—a comparison with low-temperature embedding. Protoplasma 135, 19–30 (1986). https://doi.org/10.1007/BF01277049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277049

Keywords

Navigation