Skip to main content
Log in

Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics

Pathogenetic and clinical aspects

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

A postmortem histological comparison of 5 selected cases of schizophrenia with 5 non-schizophrenic controls showed a circumscribed malformation of the entorhinal cortex. The cortical alterations consisted mainly of a lack or a change of the characteristic island formations in layer II pre-α. Further, there were atypical neurons in layers II and III showing a conspicuous decrease of volume, often a change of the shape. They lay either in clusters or in columnar formations. These cells were considered “young neurons”. The changes varied considerably from case to case and sometimes extended to all entorhinal layers. In one case the extension of the changes is described by means of serial sections in steps which extend over the whole rostral entorhinal region. Here, the striking architectural changes were formed in an exactly circumscribed sector and did not extend to the rostral hippocampal formation. On the whole, the changes are regarded as local migrational disturbances that occur during the second trimester of brain development. Neuronal displacements like these could give rise to various aberrant connections within the limbic system and related structures (e.g. the central position of the entorhinal region in circuits such as the entorhino-hippocampal loop, entorhinol-insula and entorhino-orbitofrontal reciprocal connections). Whereas alterations of the genetic programming of cell migrations may be suspected, various environmental influences (e.g. viral infections during the months III–V of pregnancy) appear to play a significant role. The malformations may be a decisive vulnerability factor for the later manifestation of the illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993 a) Altered distribution of nicotin-amide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50: 169–177

    Google Scholar 

  • Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE, Jones EG (1993 b) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50: 178–187

    Google Scholar 

  • Altshuler LL, Conrad A, Kovelman JA, Scheibel A (1987) Hippocampal pyramidal cell orientation in schizophrenia: a controlled neurohistological study of the Yakovlev collection. Arch Gen Psychiatry 44: 1094–1098

    Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey. I. Cytoarchitectonic organization. J Comp Neurol 264: 326–355

    Google Scholar 

  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991) Cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48: 625–632

    Google Scholar 

  • Beckmann H, Franzek E (1992) Deficit of birthrates in winter and spring months in distinct subgroups of mainly genetically determined schizophrenia. Psychopathology 25: 57–64

    Google Scholar 

  • Benes FM (1993) Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophr Bull 19: 537–549

    Google Scholar 

  • Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry 44: 608–616

    Google Scholar 

  • Benes FM, Majocha R, Bird ED, Marrotta CA (1987) Increased vertical axon numbers in cingulate cortex of schizophrenics. Arch Gen Psychiatry 44: 1017–1021

    Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of shizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001

    Google Scholar 

  • Bleuler E (1911) Dementia praecox oder Gruppe der Schizophrenien. In: Aschaffenburg G (ed) Handbuch der Psychiatrie. Deuticke, Leipzig Wien

    Google Scholar 

  • Bogerts B (1989) Limbic und paralimbic pathology in schizophrenia: interaction with age and stress-related factors. In: Schulz SC, Tamminga CA (eds) Schizophrenia: scientific progress. Oxford University Press, Oxford (England), pp 216–227

    Google Scholar 

  • Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19: 431–445

    Google Scholar 

  • Bogerts B, Wurthmann C, Piroth HD (1987) Hirnsubstanzdefizit mit paralimbischem und limbischem Schwerpunkt im CT Schizophrener. Nervenarzt 58: 97–106

    Google Scholar 

  • Braak H (1972) Zur Pigmentarchitektonik der Großhirnrinde des Menschen. I. Regio entorhinalis. Z Zellforsch 127: 407–438

    Google Scholar 

  • Braak H (1980) The allocortex. The entorhinal region. In: Braitenberg V, Barlow HB, Bizzi E, Florey E, Grüsser OJ, van der Loos H (eds) Studies of the brain function, vol 4. Architectonics of the humen telencephalic cortex. Springer, Berlin Heidelberg New York, pp37–48

    Google Scholar 

  • Braak H, Braak E (1985) On areas of transition between entorhinal cortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer's disease. Acta Neuropathol (Berl) 68: 325–332

    Google Scholar 

  • Braak H, Braak E, Strenge H (1976) Gehören die Inselneurone der Regio entorhinalis zur Klasse der Pyramidenoder der Sternzellen? Z Mikrosk Anat Forsch 90: 1017–1031

    Google Scholar 

  • Braitenberg V, Schüz A (1983) Some anatomical comments on the hippocampus. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 21–37

    Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon3H thymidine autoradiography. Dev Brain Res 4: 293–302

    Google Scholar 

  • Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Ann Rev Neurosci 1: 297–326

    Google Scholar 

  • Caviness VS Jr, Williams RS (1979) Cellular pathology of developing human cortex. In: Katzman (ed) Congenital and acquired cognitive disorders. Raven, New York, pp 69–90

    Google Scholar 

  • Caviness VS Jr, Pinto-Lord MC, Evrard PH (1981) The development of laminated pattern in the mammalian neocortex. In: Connelly TG, Brinkley LL, Carlson BM (eds) Morphogenesis and pattern formation. Raven, New York, pp 103–126

    Google Scholar 

  • Chuong CM, Edelman GM (1984) Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci 4: 2354–2368

    Google Scholar 

  • Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236: 799–806

    Google Scholar 

  • Falkai P, Bogerts B (1992) Neurodevelopmental abnormalities in schizophrenia. Clin Neuropharmacol 15 [Suppl 1]: 498–499A

    Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988 a) Measurement of the alpha-cell-migration in the entorhinal region: a marker for the developmental disturbances in schizophrenia? Schizophr Res 1: 157–158

    Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988 b) Limbic pathology in schizophrenia: the entorhinal region-a morphometric study. Biol Psychiatry 24: 515–521

    Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarkes auf myelogenetischer Grundlage, Bd 1. Thieme, Leipzig

    Google Scholar 

  • Franzek E, Beckmann H (1992) Season-of-birth effect reveals the existence of etiologically different groups of schizophrenia. Biol Psychiatry 32: 375–378

    Google Scholar 

  • Franzek E, Beckmann H (1995) Gene-environment interaction in schizophrenia: season-of-birth effect reveales etiological different subgroups. Psychopathology (in press)

  • Golden ChJ, Graber B, Coffman J, Berg RA, Newlin DB, Bloch S (1981) Structural brain deficits in schizophrenia. Arch Gen Psychiatry 38: 1014–1017

    Google Scholar 

  • Goodman R (1989) Neuronal misconnections and psychiatric disorder. Is there a link? Br J Psychiatry 154: 292–299

    Google Scholar 

  • Gur RE, Pearlson GD (1993) Neuroimaging in schizophrenia research. Schizophr Bull 19: 337–353

    Google Scholar 

  • Hassler R (1967) Funktionelle Neuroanatomie und Psychiatrie. Das limbische System. In: Gruble HW, Jung R, Mayer-Cross W, Müller M (Hrsg) Psychiatrie der Gegenwart. Grundlagenforschung zur Psychiatrie, Bd I/1 a. Springer, Berlin Heidelberg New York, S 222–243

    Google Scholar 

  • Insauti R, Amaral DG, Cowman WM (1987) The entorhinal cortex of the monkey. II. Cortical afferents. J Comp Neurol 264: 365–395

    Google Scholar 

  • Jakob H, Beckmann H (1984) Clinical-neuropathological studies of developmental disorders in the limbic system in chronic schizophrenia. In: Schizophrenia: an integrative view. XIV Congress CINP. Ricerca Scientifica Educazione Permanente [Suppl] 39: 81

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303–326

    Google Scholar 

  • Jakob H, Beckmann H (1989) Gross and histological criteria for developmental disorders in brains of schizophrenics. J Roy Soc Med 82: 466–469

    Google Scholar 

  • Jensen KF, Killackey HP (1984) Subcortical projections from ectopic neocortical neurons. Proc Natl Acad Sci USA 81: 964–968

    Google Scholar 

  • Kahle W (1969) Die Entwicklung der menschlichen Großhirnhemisphaere. In: Bauer HJ, Gänshirt H, Spatz H, Vogel P (eds) Neurology series, vol 1. Spinger, Berlin Heidelberg New York, pp 6–107

    Google Scholar 

  • Kovelman JA, Scheibel AB (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19: 1601–1619

    Google Scholar 

  • Kostóvic I, Petanjek Z, Judas M (1990) The earliest areal differentiation of the human cerebral cortex: entorhinal area. Soc Neurosci Abstr 16: 351–356

    Google Scholar 

  • Leonhard K (1957) Aufteilung der endogenen Psychosen. Akademie, Berlin

    Google Scholar 

  • Leonhard K (1979) The classification of endogenous psychoses, vol 5. In: Eli Robins (ed) Irvington Publishers, New York London Sydney Toronto

    Google Scholar 

  • Macchi G (1951) The ontogenetic development of the olfactory telencephalon in man. J Comp Neurol 95: 245–305

    Google Scholar 

  • McSweeny D, Timms P, Johnson A (1987) Thyro-endocrine pathology, obstetric morbidity and schizophrenia: a survey of a hundred families with a schizophrenic proband. Psychol Med 8: 151–155

    Google Scholar 

  • Murray RM, Lewis SW (1987) Is schizophrenia a neuro-developmental disorder? Br Med J 295: 681–682

    Google Scholar 

  • Nowakowski RS (1987) Basic concepts of CNS development. Child Dev 58: 568–595

    Google Scholar 

  • Nowakowski RS, Rakic P (1981) The site of origin and route and rate of migration of neurons to the hippocampal region of the rhesus monkey. J Comp Neurol 196: 129–154

    Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A 10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434: 117–165

    Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones GE (eds) Cerebral cortex, vol4. Association and auditory cortices. Plenum Press, New York, pp 3–61

    Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiat (Chic) 38: 725–743

    Google Scholar 

  • Pinto-Lord MC, Evrard P, Caviness VS Jr (1982) Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi EM analysis. Dev Brain Res 4: 379–393

    Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84

    Google Scholar 

  • Rakic P (1975) Cell migration and neuronal ectopias in the brain. In: Bergsma D (ed) Morphogenesis and malformations of the face and brain. Alan Riss, New York, pp 95–129

    Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in primate telencephalon. Postgrad Med J 54: 25–40

    Google Scholar 

  • Rakic P (1985) Contact regulation of neuronal migration. In: Edelman GM, Thiery JP (eds) The cell contact: adhesions and junctions of morphogenetic determinants. Wiley and Sons, New York, pp 67–91

    Google Scholar 

  • Rakic P (1988 a) Defects of neuronal migration and the pathogenesis of cortical malformations. Prog Brain Res 73: 15–37

    Google Scholar 

  • Rakic P (1988 b) Specification of cerebral cortical areas. Science 241: 170–176

    Google Scholar 

  • Rakic P, Nowakowski RS (1981) The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196: 99–128

    Google Scholar 

  • Rieder RO, Rosenthal D, Wender P, Blumenthal H (1975) The offspring of schizophrenics. Fetal and neonatal deaths. Arch Gen Psychiatry 32: 200–211

    Google Scholar 

  • Rose M (1927) Der Allocortex bei Tier und Mensch, Teil 1. J Psychol Neurol 34: 1–111

    Google Scholar 

  • Rüdin E (1938) 20 Jahre menschliche Erbforschung an der Deutschen Forschungsanstalt für Psychiatrie in München, Kaiser-Wilhelm-Institut. Arch Rassen Gesellsch Biol 32: 193–204

    Google Scholar 

  • Segal M, Landis S (1974) Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res 78: 1–15

    Google Scholar 

  • Senitz D, Winkelmann E (1981) Morphologische Befunde in der orbitofrontalen Rinde bei Menschen mit schizophrenen Psychosen. Eine Golgi- und elektronenoptische Studie. Psychiatr Neurol Med Psychol (Leipz) 33: 1–9

    Google Scholar 

  • Senitz D, Winkelmann E (1991) Neuronale Struktur-Anomalität im orbito-frontalen Cortex bei Schizophrenien. J Hirnforsch 32: 149–158

    Google Scholar 

  • Sgonina K (1938) Zur vergleichenden Anatomie der Entorhinal- und Praesubikularregion. J Psychol Neurol 48: 56–163

    Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration with special reference to developing human brain: a review. Brain Res 62: 1–35

    Google Scholar 

  • Sobel D (1961) Infant mortality and malformations in children and schizophrenic women. Psychiatr Q 35: 60–64

    Google Scholar 

  • Staagard M, Torben M, Mollgard K (1991) Is the genetic vulnerability to schizophrenia linked to abnormal development of the ventricular system and the brain barrier system in the human fetal brain? In: Mednick SA, Cannon TD, Barr CE, Lyon M (eds) Fetal neural development and adult schizophrenia. Cambridge University Press, Cambridge New York Port Chester Melbourne

    Google Scholar 

  • Stephan H (1975) Allocortex. Regio entorhinalis. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol IV/9. Ergänzung zu Bd IV/1. Springer, Berlin Heidelberg New York, pp 642–715

    Google Scholar 

  • Stöber G, Franzek E, Beckmann H (1992) The role of maternal infectious diseases during pregnancy in the etiology of schizophrenia in the offspring. Biol Psychiatry 7: 147–152

    Google Scholar 

  • Stöber G, Franzek E, Beckmann H (1993) Obstetric complications in distinct schizophrenic subgroups. Eur Psychiatry 8: 293–299

    Google Scholar 

  • Tramer M (1929) Über die biologische Bedeutung des Geburtsmonates, insbesondere für die Psychoseerkrankung. Schweiz Arch Neurol Psychiat 24: 17–24

    Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus: its cortical connections in the monkey. Trends Neurosci 5: 345–350

    Google Scholar 

  • Weinberger DR (1984) Computed tomography (CT) findings in schizophrenia: speculation on the meaning of it all. J Psychiat Res 18: 477–490

    Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669

    Google Scholar 

  • Weinberger DR, DeLisi LE, Perman G, Targum S, Wyatt RJ (1982) Computed tomography scans in schizophreniform disorder and other acute psychiatric patients. Arch Gen Psychiatry 39: 778–783

    Google Scholar 

  • Witter MP, Room P, Groenewegen HJ, Lohmann AHM (1986) Connection of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus. J Comp Neurol 252: 78–94

    Google Scholar 

  • Yakovlev PI, Lecours A (1967) The myelinogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain early in life. Blackwell, Oxford (England), pp 3–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, H., Beckmann, H. Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. J. Neural Transmission 98, 83–106 (1994). https://doi.org/10.1007/BF01277013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277013

Keywords

Navigation