Skip to main content
Log in

Xanthine accumulation and vacuolization inChlamydomonas reinhardtii cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Utilization of xanthine as the sole nitrogen source for growth byChlamydomonas reinhardtii cells involved the formation of a transient, intracellular pool of xanthine. Up to 20% of the total xanthine supplied to the medium was not assimilated after uptake but stored in the cells at concentrations that exceeded xanthine solubility in water. At the subcellular level, a massive accumulation of starch grains in the chloroplast and the appearance of many vacuoles in the cytoplasm distinguished xanthine-grown from ammonium-grown cells. Starch accumulation, but not development of vacuoles, was also observed in N-starved cells. Uptake experiments with radio-labelled xanthine showed that this accumulates only in the cytoplasm, most probably inside vacuoles. The electron-dense material observed in vacuoles of xanthine-grown cells suggests that the intracellular xanthine is in part solid xanthine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alamillo JM, Cardenas J, Pineda M (1991) Purification and molecular properties of urate oxidase fromChlamydomonas reinhardtii. Biochim Biophys Acta 1076: 203–208

    PubMed  Google Scholar 

  • Alamillo JM, Cardenas J, Pineda M (1992) Kinetic and catalytic characterization of urate oxidase fromChlamydomonas reinhardtii. J Mol Catal 77: 353–364

    Google Scholar 

  • Amman ECB, Lynch VH (1964) Purine metabolism by unicellular algae. II. Adenine, hypoxanthine and xanthine degradation byChlorella pyrenoidosa. Biochim Biophys Acta 87: 370–379

    PubMed  Google Scholar 

  • Antia NJ, Harrison PJ, Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30: 1–89

    Google Scholar 

  • Dagestad D, Lien T, Knutsen G (1981) Degradation and compartmentation of urea inChlamydomonas reinhardtii. Arch Microbiol 129: 261–264

    Google Scholar 

  • Douglas AE (1983) Uric acid utilization inPlatymonas convolutae and symbioticConvolutae roscoffensis. J Mar Biol Assoc UK 63: 435–447

    Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism ofChlamydomonas. Analysis of fermentative products from starch in dark and light. Plant Physiol 75: 212–218

    Google Scholar 

  • González-Fernández A, Aller P, Sans J, De la Torre C (1992) Early and late replicating DNA involved in G1 to S transition inAllium cepa L. meristematic cells. Biol Cell 74: 243–247

    PubMed  Google Scholar 

  • Harris EH (1989) TheChlamydomonas sourcebook. A comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Krenitsky TA, Spector T, Hall WW (1986) Xanthine oxidase from human liver: purification and characterization. Arch Biochem Biophys 247: 108–119

    PubMed  Google Scholar 

  • Munch-Petersen A, Mygind B (1983) Transport of nucleic acid precursors. In: Munch-Petersen A (ed) Metabolism of nucleotides, nucleosides and nucleobases in microorganisms. Academic Press, London, pp 259–305

    Google Scholar 

  • Oliveira L, Huynh H (1989) Ultrastructure and cytochemistry ofDunaliella tertiolecta Butcher andPavlova lutheri (Droop) Green grown on three different sources of organic nitrogen. New Phytol 113: 481–490

    Google Scholar 

  • Pérez-Vicente R, Alamillo JM, Cárdenas J, Pineda M (1992) Purification and substrate inactivation of xanthine dehydrogenase fromChlamydomonas reinhardtii. Biochim Biophys Acta 1117: 159–166

    PubMed  Google Scholar 

  • —, Cardenas J, Pineda M (1991) Distinction between hypoxanthine and xanthine transport inChlamydomonas reinhardtii. Plant Physiol 95: 126–130

    Google Scholar 

  • —, Pineda M, Cardenas J (1988) Isolation and characterization of xanthine dehydrogenase fromChlamydomonas reinhardtii. Physiol Plant 72: 101–107

    Google Scholar 

  • Petersen R (1975) Control by ammonium of intercompartmental guanine transport inChlorella. Z Pflanzenphysiol 76: 213–223

    Google Scholar 

  • Pineda M, Cabello P, Cardenas J (1987) Ammonium regulation of urate uptake inChlamydomonas reinhardtii. Planta 171: 496–500

    Google Scholar 

  • —, Cardenas J (1985) The urate uptake system inChlamydomonas reinhardtii. Biochim Biophys Acta 820: 95–99

    Google Scholar 

  • —, Fernández E, Cardenas J (1984) Urate oxidase ofChlamydomonas reinhardtii. Physiol Plant 62: 453–457

    Google Scholar 

  • Reichert U, Winter M (1974) Uptake and accumulation of the purine bases by stationary yeast cells pretreated with glucose. Biochim Biophys Acta 356: 108–116

    PubMed  Google Scholar 

  • Roush AH (1961) Crystallization of purines in the vacuole ofCandida utilis. Nature 190: 44

    Google Scholar 

  • —, Questiaux LM, Domnas AJ (1959) The active transport and metabolism of purines in the yeastCandida utilis. J Cell Comp Physiol 54: 275–286

    PubMed  Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid inChlamydomonas reinhardtii. Proc Natl Acad Sci USA 46: 83–91

    Google Scholar 

  • Syrett PJ (1981) Nitrogen metabolism of microalgae. Physiological bases of phytoplankton ecology. Can J Fish Aquat Sci 210: 182–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Vicente, R., Burón, M.I., González-Reyes, J.A. et al. Xanthine accumulation and vacuolization inChlamydomonas reinhardtii cells. Protoplasma 186, 93–98 (1995). https://doi.org/10.1007/BF01276941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276941

Keywords

Navigation