Skip to main content
Log in

Physiology and development of protoplasts obtained fromFucus embryos using laser microsurgery

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Protoplasts from rhizoids of two-celledFucus embryos were obtained using laser microsurgery. They were characterised by a membrane potential similar to that of a rhizoid cell in situ and a rapid regeneration of the cell wall. Nucleated subprotoplasts with regenerated cell wall were capable of photopolarisation as zygotes. These pseudozygotes developed into miniature embryos similar to zygotic embryos. The nucleus appeared to be necessary for pseudozygote polarisation but the transcription inhibitor, actinomycin D, though preventing zygote polarisation, was inactive on pseudozygotes. A role for the nucleus as a geometric reference is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

actinomycin D

ASW:

artificial sea water

PEG:

polyethyleneglycol

CFW:

calcofluor white

MTOC:

microtubule organising centre

References

  • Allen VW, Kropf DL (1992) Nuclear rotation and lineage specification inPelvetia embryos. Development 115: 873–883

    Google Scholar 

  • Beams HW (1937) The air turbine ultracentrifuge, together with some results upon ultracentrifuging the eggs ofFucus serratus. J Marine Biol Assoc UK 21: 571–588

    Google Scholar 

  • Berger F, Brownlee C (1994) Photopolarization of theFucus sp. zygote by blue light involves a plasma membrane redox chain. Plant Physiol 105: 519–527

    PubMed  Google Scholar 

  • —, Taylor AR, Brownlee C (1994) Cell fate determination by the cell wall in earlyFucus development. Science 263: 1421–1423

    Google Scholar 

  • Bentrup FW (1963) Vergleichende Untersuchungen zur Polaritätsinduktion durch das Licht an der Equisetumspore und der Fucuszygote. Planta 59: 472–491

    Google Scholar 

  • Boyen C, Kloareg B, Vreeland V (1988) Comparison of protoplast wall regeneration and native wall deposition in zygotes ofFucus distichus by cell wall labelling with monoclonal antibodies. Plant Physiol Biochem 26: 653–659

    Google Scholar 

  • Brawley SH, Quatrano RS (1979) Effects of microtubule inhibitors on pronuclear migration and embryogenesis inFucus distichus (Phaeophyta). J Phycol 15: 266–272

    Google Scholar 

  • —, Quatrano RS, Wetherbee R (1976) Fine-structural studies of the gametes and embryo ofFucus vesiculosus L. (Phaeophyta). II. The cytoplasm of the egg and young zygote. J Cell Sci 20: 255–271

    PubMed  Google Scholar 

  • — — — (1977) Fine-structural studies of the gametes and embryo ofFucus vesiculosus L. (Phaeophyta). III. Cytokinesis and the multicellular embryo. J Cell Sci 24: 275–294

    PubMed  Google Scholar 

  • Brownlee C, Pulsford AL (1988) Visualisation of the cytoplasmic free calcium gradient inFucus serratus rhizoids: correlation with cell ultrastructure and polarity. J Cell Sci 91: 249–256

    Google Scholar 

  • —, Wood JW (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serratus. Nature 320: 624–626

    Google Scholar 

  • Burgess J (1983) Wall regeneration around isolated protoplasts. Int Rev Cytol [Suppl] 16: 55–77

    Google Scholar 

  • Butler DM, Evans LV, Kloareg B (1990) Isolation of protoplasts from marine macroalgae. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, the Hague, pp 647–668

    Google Scholar 

  • Cocking EC (1972) Plant cell protoplasts isolation and development. Annu Rev Plant Physiol 23: 29–50

    Google Scholar 

  • De Boer AH, Van Duijn B, Giesberg P, Wegner L, Obermeyer G, Köhler K, Linz KW (1994) Laser microsurgery: a versatile tool in plant (electro)physiology. Protoplasma 178: 1–10

    Google Scholar 

  • Derksen J, Traas JA (1984) Growth of tobacco pollen tubes in vitro: effects of drags interference with the cytoskeleton. In: Willemse MTM, Van Went JL (eds) Proceedings of the 8th International Symposium on Sexual Reproduction in Seed Plants, Ferns and Mosses. Pudoc, Wageningen, pp 64–70

    Google Scholar 

  • Ducreux G, Kloareg B (1988) Plant regeneration from protoplasts ofSphacelaria (Phaeophyceae). Planta 174: 25–29

    Google Scholar 

  • Goodner B, Quatrano RS (1993)Fucus embryogenesis: a model to study the establishment of polarity. Plant Cell 5: 1471–1481

    PubMed  Google Scholar 

  • Greulich KO, Weber G (1992) The light microscope on its way from an analytical to a preparative tool. J Microsc 167: 127–151

    Google Scholar 

  • Hurd AM (1920) Effect of unilateral monochromatic light and group orientation on the polarity of germinatingFucus spores. Bot Gaz 70: 25–50

    Google Scholar 

  • Hyman AA (1989) Centrosome movement in the early division ofCeanorhabditis elegans: a cortical site determining centrosome position. J Cell Biol 109: 1185–1193

    PubMed  Google Scholar 

  • Jaffe LF (1958) Tropistic responses of zygotes of the Fucaceae to polarised light. Exp Cell Res 15: 282–299

    PubMed  Google Scholar 

  • Jenkins GI, Cove DJ (1963) Light requirements for regeneration of protoplasts of the mossPhyscomitrella patens. Planta 157: 39–45

    Google Scholar 

  • Kloareg B, Quatrano RS (1987) Enzymatic removal of the cell walls from zygotes ofFucus disticus (L.) Powell (Phaeophyta). Hydrobiolgia 151/152: 123–129

    Google Scholar 

  • — — (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Marine Biol Annu Rev 26: 259–315

    Google Scholar 

  • —, Polne-Fuller M, Gibor A (1989) Mass production of viable protoplasts fromMacrocystis pyrifera (L.) C. Ag. (Phaeophyta). Plant Sci 62: 105–112

    Google Scholar 

  • Krantz E, Lörz H (1993) In vitro fertilization with isolated single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5: 739–746

    PubMed  Google Scholar 

  • Kroh M, Knuimann B (1988) Development of subprotoplasts from in vitro-grown tobacco pollen tubes. Sex Plant Reprod 1: 103–113

    Google Scholar 

  • Kropf DL (1992) Establishment and expression of cellular polarity in fucoid zygotes. Microbiol Rev 56: 316–339

    PubMed  Google Scholar 

  • —, Kloareg B, Quatrano RS (1988) Cell wall is required for fixation of the embryonic axis inFucus zygotes. Science 239: 187–190

    PubMed  Google Scholar 

  • —, Hopkins R, Quatrano RS (1989) Protein synthesis and morphogenesis are not tightly linked during embryogenesis inFucus. Dev Biol 134: 452–461

    Google Scholar 

  • —, Maddock A, Gard DL (1990) Microtubule distribution and function in earlyPelvetia development. J Cell Sci 97: 545–552

    Google Scholar 

  • —, Coffman HR, Kloareg B, Allen VW, Glenn P (1993) Cell wall and rhizoid polarity inPelvetia embryos. Dev Biol 160: 303–314

    PubMed  Google Scholar 

  • Kurkdjian A, Leitz G, Manigault P, Harim A, Greulich KO (1993) Non-enzymatic access to the plasma membraneMedicago root hairs by laser microsurgery. J Cell Sci 105: 263–268

    Google Scholar 

  • Lloyd CW, Pearce KJ, Rawlins DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs but F-actin is involved in basipetal migration. Cell Motil Cytoskeleton 8: 27–36

    Google Scholar 

  • Maeda H, Ishida N (1967) Specifity of binding of hexopyranosyl polysaccharides with a fluorescent brightener. J Biochem 62: 276–278

    PubMed  Google Scholar 

  • Mejjad M, Loiseaux-de-Goer S, Ducreux G (1992) Protoplasts isolation, development and regeneration in different strains ofPilavela littoralis (L.) Kjellm. (Phaeophyceae). Protoplasma 169: 42–48

    Google Scholar 

  • Mishra AK, Colvin JR (1969) The formation of wall-like envelopes by isolated tomato-fruit protoplasts. Protoplasma 67: 295–305

    Google Scholar 

  • Pojnar E, Willison JHM, Cocking EC (1967) Cell-wall regeneration by isolated tomato-fruit protoplasts. Protoplasma 64: 460–480

    Google Scholar 

  • Quatrano RS (1968) Rhizoid formation inFucus zygotes: dependence on protein and ribonucleic acid syntheses. Science 162: 468–470

    PubMed  Google Scholar 

  • — (1972) An ultrastructural study of the determined site of rhizoid formation inFucus zygotes. Exp Cell Res 70: 1–12

    PubMed  Google Scholar 

  • —, Stevens PT (1976) Cell wall assembly inFucus zygotes. I. Characterization of the polysaccharide components. Plant Physiol 58: 224–231

    Google Scholar 

  • —, Brawley SH, Hogsett WE (1979) The control of the polar deposition of a sulphated polysaccharide inFucus zygotes. In: Subtelny S, Konisberg IR (eds) Determinants of spatial organisation. Academic Press, New York, pp 77–96

    Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5: 1349–1359

    PubMed  Google Scholar 

  • Rutten TLM, Derksen J (1990) Organization of actin filaments in regenerating and outgrowing subprotoplasts from pollen tubes ofNicotiana tabacum L. Planta 180: 471–479

    Google Scholar 

  • Schmiedel G, Schnepf E (1979a) Side branch formation and orientation in the caulonema of the moss,Funaria hygrometrica: experiments with inhibitors and with centrifugation. Protoplasma 101: 47–59

    Google Scholar 

  • — — (1979b) Side branch formation and orientation in the caulonema of the moss,Funaria hygrometrica: normal development and fine structure. Protoplasma 100: 367–383

    Google Scholar 

  • Schnepf E (1986) Cellular polarity. Annu Rev Plant Physiol 37: 23–47

    Google Scholar 

  • Snyder M, Gehrung S, Page BD (1991) Studies concerning the temporal and genetic control of cell polarity inSaccharomyces cerevisiae. J Cell Biol 114: 515–532

    PubMed  Google Scholar 

  • Swope RE, Kropf DL (1993) Pronuclear positioning and migration during fertilization inPelvetia. Dev Biol 157: 269–276

    PubMed  Google Scholar 

  • Taylor AR, Brownlee C (1992) Localized patch clamping of plasma membrane of a polarized plant cell. Plant Physiol 99: 1686–1688

    Google Scholar 

  • — — (1993) Calcium and potassium currents in theFucus egg. Planta 1989: 109–119

    Google Scholar 

  • —, Roberts SK, Brownlee C (1992) Calcium and related channels in fertilization and early development ofFucus. Philos Trans R Soc Lond [Biol] 338: 97–104

    Google Scholar 

  • Vogelmann TC, Bassei AR, Miller JH (1981) Effects of microtubule-inhibitors on nuclear migration and rhizoid differentiation in germinating fern spores (Onoclea sensibilis). Protoplasma 109: 295–316

    Google Scholar 

  • Wagner VT, Brian L, Quatrano RS (1992) Role of a vitronectin-like molecule in embryo adhesion of the brown algaFucus. Proc Natl Acad Sci USA 89: 4644–4688

    Google Scholar 

  • West MAL, Harada HH (1993) Embryogenesis in higher plants: an overview. Plant Cell 5: 1361–1369

    PubMed  Google Scholar 

  • Whitaker DM (1931) Some observations on the eggs ofFucus and upon their mutual influence in the determination of the development axis. Biol Bull 61: 294–308

    Google Scholar 

  • — (1937) Determination of polarity by centrifuging eggs ofFucus furcatus. Biol Bull 73: 249–260

    Google Scholar 

  • Williamson FA, Fowke LC, Weber G, Constabel F, Gamborg O (1977) Microfibril deposition on cultured protoplasts ofVicia hajastana. Protoplasma 91: 213–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, F., Brownlee, C. Physiology and development of protoplasts obtained fromFucus embryos using laser microsurgery. Protoplasma 186, 63–71 (1995). https://doi.org/10.1007/BF01276937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276937

Keywords

Navigation