, Volume 97, Issue 2–3, pp 221–240 | Cite as

Structure, function, and development of the peristome of the moss,Rhacopilum tomentosum, with special reference to the problem of microfibril orientation by microtubules

  • E. Schnepf
  • U. Stein
  • G. Deichgräber


The movement of the outer peristome teeth of the sporangium of the moss,Rhacopilum tomentosum, is driven by different swelling velocities of the outer (“plates”) and inner (“ridges”) wall thickenings due to suberin-like substances and wax-lamellae which enclose the ridges. The plates do not contain suberin-like material. The hydrophobic materials are secreted with the participation of smooth tubular ER.—When the local wall thickenings of the peristome teeth are formed, microtubules are concentrated along the plasmalemma in the thickening regions. They run along the crest of the developing plates (i.e., normal to the long axis of the tooth) and parallel to the long axis in the ridge cells. The wall thickenings are composed of layers of parallel microfibrils and of matrix substances. With a few exceptions microtubules and microfibrils have different directions. Golgi vesicles, subsurface ER and coated regions in the plasmalemma also are involved in cell wall formation. The function of the microtubules is discussed.


Cell Wall Wall Thickening Crest Special Reference Cell Wall Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barckhausen, R., Rosenstock, G., 1973: Feinstrukturelle Beobachtungen zur traumatogenen Suberinisierung beim Kartoffelparenchym vonSolanum tuberosum L. Z. Pflanzenphysiol.69, 193–203.Google Scholar
  2. Brown, R. M. Jr., Franke, W. W., Kleinig, H., Falk, H., Sitte, P., 1970: Scale formation in chrysophycean algae. I. Cellulosic and noncellulosic wall components made by the Golgi apparatus. J. Cell Biol.45, 246–271.PubMedGoogle Scholar
  3. —,Herth, W., Franke, W. W., Romanovicz, D., 1973: The role of the Golgi apparatus in the biosynthesis and secretion of a cellulosic glycoprotein inPleurochrysis: a model system for the synthesis of structural polysaccharides. In: Biogenesis of plant cell wall polysaccharides (Loewus, F., ed.), pp. 207–257. New York-London: Academic Press.Google Scholar
  4. Haas, K., Buchloh, G., Baydur, B., Tertinegg, W., 1978: Alkane patterns inPolytrichum andPorella species. Z. Pflanzenphysiol.86, 389–394.Google Scholar
  5. Heath, I. B., 1974: A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. theor. Biol.48, 445–449.PubMedGoogle Scholar
  6. Hepler, P. K., Fosket, D. E., 1971: The role of microtubules in vessel member differentiation inColeus. Protoplasma72, 213–236.Google Scholar
  7. —,Newcomb, E. H., 1964: Microtubules and fibrils in the cytoplasm ofColeus cells undergoing secondary wall deposition. J. Cell Biol.20, 529–533.PubMedGoogle Scholar
  8. Hogetsu, T., Shibaoka, H., 1978: Effects of colchicine on cell shape and on microfibril arrangement in the cell wall ofClosterium acerosum. Planta140, 15–18.Google Scholar
  9. Ingold, C. T., 1959: Peristome teeth and spore discharge in mosses. Trans. Proc. Bot. Soc. (Edinb.)38, 76–88.Google Scholar
  10. —, 1965: Spore liberation. Oxford: Clarendon Press.Google Scholar
  11. Livolant, F., Giraud, M.-M., Bouligand, Y., 1978: A goniometric effect observed in sections of twisted fibrous materials. Biol. Cellulaire31, 159–168.Google Scholar
  12. Lüttge, U., Schnepf, E., 1976: Elimination processes by glands. Organic substances. In: Encyclopedia of plant physiology. New series, Vol. 2, Part B: Transport in Plants. II, Part B: Tissues and organs (Lüttge, U., Pitman, M. G., eds.), pp. 244–277. Berlin-Heidelberg-New York: Springer.Google Scholar
  13. Maier, K., 1973 a: Dehiscence of the moss capsule. II. The anulus: analysis of its functional apparatus, Österr. Bot. Z.122, 75–98.Google Scholar
  14. —, 1973 b: Dehiscence of the moss capsule. III. Anulus function and lid stability: a study with the light and scanning electron microscope. Österr. Bot. Z.122, 99–114.Google Scholar
  15. —, 1973 c: Zur Dehiszenz der Laubmooskapsel. IV. Prinzipien der Anulusfunktion: Teil I. Österr. Bot. Z.122, 237–257.Google Scholar
  16. Pickett-Heaps, J. D., 1967: The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation and distribution of cytoplasmic microtubules. Develop. Biol.15, 206–236.Google Scholar
  17. Robenek, H., Peveling, E., 1977: Ultrastructure of the cell wall regeneration of isolated protoplasts ofSkimmia japonica Thunb. Planta136, 135–145.Google Scholar
  18. Robinson, D. G., 1977: Structure, synthesis and orientation of microfibrils. IV. Microtubules and microfibrils inGlaucocystis. Cytobiol.15, 475–484.Google Scholar
  19. —,Grimm, I., Sachs, H., 1976: Colchicine and microfibril orientation. Protoplasma89, 375–380.Google Scholar
  20. —,Herzog, W., 1977: Structure, synthesis and orientation of microfibrils. III. A survey of the action of microtubule inhibitors on microtubules and microfibril orientation inOocystis solitaria. Cytobiol.15, 463–474.Google Scholar
  21. Schnepf, E., 1972: Tubuläres endoplasmatisches Reticulum in Drüsen mit lipophilen Ausscheidungen vonFicus, Ledum undSalvia. Biochem. Physiol. Pfl.163, 113–125.Google Scholar
  22. —, 1973: Mikrotubulus-Anordnung und Umordnung, Wandbildung und Zellmorphogenese in jungenSphagnum-Blättdien. Protoplasma78, 145–173.Google Scholar
  23. —, 1974: Microtubules and cell wall formation. Portugal. Acta Biol. Sér. A14, 451–461.Google Scholar
  24. —,Röderer, G., Herth, W., 1975: The formation of the fibrils in the lorica ofPoteriochromonas stipitata: tip growth, kinetics, site, orientation. Planta125, 45–62.Google Scholar
  25. Schulz, E., Schmidt, W., 1974: Entwicklung des Peristoms vonFunaria hygrometrica. Flora163, 451–465.Google Scholar
  26. Sitte, P., 1975: Die Bedeutung der molekularen Lamellenbauweise von Korkzellwänden. Biochem. Physiol. Pfl.168, 287–297.Google Scholar
  27. Soliday, C. L., Kolattukudy, P. E., 1977: Biosynthesis of cutin, ω-hydroxylation of fatty acids by a microsomal preparation from germinatingVicia faba. Plant Physiol.59, 1116–1121.Google Scholar
  28. Srivastava, L. M., Sawhney, V. K., Bonettemaker, M., 1977: Cell growth, wall deposition, and correlated fine structure of colchicine-treated lettuce hypocotyl cells. Canad. J. Bot.55, 902–917.Google Scholar
  29. —,Singh, A. P., 1972: Certain aspects of xylem differentiation in corn. Canad. J. Bot.50, 1795–1804.Google Scholar
  30. Steinbrinck, C., 1897: Der hygroskopische Mechanismus des Laubmoosperistoms. Flora84, Ergänzungsbd., 131–158.Google Scholar
  31. Straka, H., 1962: Nicht durch Reize ausgelöste Bewegungen. In: Handbuch der Pflanzenphysiologie (Ruhland, W., ed.), Bd. XVII: Physiologie der Bewegungen, Teil 2: Bewegungen durch Einflüsse der Temperatur, Schwerkraft, chemischer Faktoren und aus inneren Ursachen, pp. 716–836. Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  32. Wattendorff, J., 1974: The formation of cork cells in the periderm ofAcacia Senegal Willd. and their ultrastructure during suberin deposition. Z. Pflanzenphysiol.72, 119–134.Google Scholar
  33. —, 1976: A third type of raphide crystal in the plant kingdom: six-sided raphides with laminated sheaths inAgave americana L. Planta130, 303–311.Google Scholar
  34. Wooding, F. B. P., Northcote, D. H., 1964: The development of the secondary wall of the xylem inAcer pseudoplatanus. J. Cell Biol.23, 327–337.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • E. Schnepf
    • 1
  • U. Stein
    • 1
  • G. Deichgräber
    • 1
  1. 1.Zellenlehre, Universität HeidelbergHeidelbergGermany

Personalised recommendations