Skip to main content
Log in

Autoradiographic characterization of neurotensin receptors in the entorhinal cortex of schizophrenic patients and control subjects

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Neurotensin, an endogenous peptide and putative neurotransmitter, exhibits a wide range of interactions with dopaminergic neurons and displays some actions akin to neuroleptics. Moreover, neurotensin receptors are abundant in specific layers of the entorhinal cortex where cytoarchitectural abnormalites have been reported in schizophrenia. We therefore examined the entorhinal cortex from postmortem specimens of five control patients and six schizophrenic patients for alterations in neurotensin receptor quantitation and distribution using receptor autoradiography.

Specific125I-neurotensin binding was concentrated in layer II cell clusters, with a 40% reduction in binding in the schizophrenic group (p<0.05). Moderate binding was observed in both cohorts in deep layers V/VI, with negligible binding in the hippocampus. There was no statistical difference in quantitative neurotensin binding in other lamina of the entorhinal cortex of schizophrenics compared with controls. The characteristic laminar pattern of binding did not differ between cohorts. The reduction in neurotensin binding in schizophrenics is consistent with an increasing number of reports of structural abnormalities in the medial temporal lobe of schizophrenics in general and the entorhinal cortex in particular. Further studies are required to examine the evidence for neuroanatomic and neurochemical pathology in the entorhinal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE (1990) The hippocampus and parahippocampus in schizophrenia, suicide, and control brains. Arch Gen Psychiatry 47: 1029–1034

    Google Scholar 

  • Amaral DG, Insausti R (1990) The hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 711–755

    Google Scholar 

  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991a) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48: 625–632

    Google Scholar 

  • Arnold SE, Lee VM, Raquel RE, Trojanowski JQ (1991b) Abnormal expression of two microtubule-associate proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 88: 10850–10854

    Google Scholar 

  • Benzing WC, Mufson EJ, Jennes L, Stopa EG, Armstrong DM (1992) Distribution of neurotensin immunoreactivity within the human amygdaloid complex: a comparison with acetylcholinesterase and Nissl-stained tissue sections. J Comp Neurol 317: 283–297

    Google Scholar 

  • Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6–31

    Google Scholar 

  • Chinaglia G, Probst A, Palacios JM (1990) Neurotensin receptors in Parkinson's disease and progressive supranuclear palsy: an autoradiographic study in basal ganglia. Neuroscience 39: 351–360

    Google Scholar 

  • Clapacs JT, Cain ST, Knight DL, Smith WE, Nemeroff CB (1991) Changes in neurotensin receptor density in rats treated chronically with haloperidol and sigma antagonist BMY 14802. Soc Neurosci Abstr 17(1): 806

    Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988a) Limbic pathology in schizophrenia: the entorhinal region — a morphometric study. Biol Psychiatry 24: 515–521

    Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for the developmental disturbances in schizophrenia? Schizophr Res 1: 157–158

    Google Scholar 

  • Herve D, Tassin JP, Studlen JM, Pana D, Kitagbi P, Vincent JP, Glowinski J, Rostene W (1986) Dopaminergic control of125I-labeled neurotensin binding site density in corticolimbic structures of the rat brain. Proc Natl Acad Sci USA 83: 6203–6207

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer's disease. Ann Neurol 20: 472–481

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303–326

    Google Scholar 

  • Jakob H, Beckmann H (1989) Gross and histological criteria for developmental disorders in brains of schizophrenics. J Roy Soc Med 89: 466–469

    Google Scholar 

  • Jansen KLR, Faull RLM, Dragunow M (1989) Excitatory amino acid receptors in the human cerebral cortex: a quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine, L-[3H] glutamate, [3H]AMPA and [3H]kainic acid binding sites. Neuroscience 32: 587–607

    Google Scholar 

  • Jansen KLR, Faull RLM, Dragunow M, Synek BL (1990) Alzheimer's disease: changes in hippocampal n-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors — an autoradiographic study. Neuroscience 39: 613–627

    Google Scholar 

  • Joyce JN, Janowsky A, Neve KA (1991) Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. J Pharmacol Exp Ther 257: 1253–1263

    Google Scholar 

  • Joyce JN, Lexow N, Kim SJ, Artymyshyn R, Senzon S, Lawrence D, Casanova MF, Kleinman JE, Bird ED, Winokur A (1992) Distribution of beta-adrenergic receptor subtypes in human post-mortem brain: alterations in limbic regions of schizophrenics. Synapse 10: 228–246

    Google Scholar 

  • Joyce JN, Murray A, Ryoo H, Goldsmith S (1993) Expression of D2 and D3 receptors in limbic system of normals, schizophrenics and Alzheimer's cases. Soc Neurosci Abstr 19: 1370

    Google Scholar 

  • Kanba KS, Kanba S, Okazaki H, Richelson E (1986) Binding of [3H]neurotensin in human brain: properties and distribution. J Neurochem 46: 946–952

    Google Scholar 

  • Kasckow J, Nemeroff CB (1991) The neurobiology of neurotensin: focus on neurotensindopamine interactions. Regul Pept 36: 153–164

    Google Scholar 

  • Kerwin R, Robinson P, Stephenson J (1992) Distribution of CCK binding sites in the human hippocampal formation and their alteration in schizophrenia: a postmortem autoradiographic study. Psychol Med 22: 37–43

    Google Scholar 

  • Kohler C, Radesater A-C, Chan-Palay V (1987) Distribution of neurotensin receptors in the primate hippocampal region: a quantitative autoradiographic study in the monkey and the postmortem human brain. Neurosci Lett 76: 145–150

    Google Scholar 

  • Mai JK, Triepel J, Metz J (1987) Neurotensin in the human brain. Neuroscience 22: 499–524

    Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13: 5418–5432

    Google Scholar 

  • Merchant KM, Dorsa DM (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci 90: 3447–3451

    Google Scholar 

  • Moyse E, Rostene W, Vial M, Leonard K, Mazella J, Kitabgi P, Vincent J-P, Beaudet A (1987) Distribution of neurotensin binding sites in rat brain: a light microscopic radioautographic study using monoiodo [125I]Tyr3-neurotensin. Neuroscience 22: 525–536

    Google Scholar 

  • Palacios JM, Chinablia G, Rigo M, Ulrich J, Probst A (1991) Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia. Synapse 7: 114–122

    Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21: 97–122

    Google Scholar 

  • Quirion R, Welner S, Gauthier S, Bedard P (1987) Neurotensin receptor binding sites in monkey and human brain: autoradiographic distribution and effects of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine treatment. Synapse 1: 559–566

    Google Scholar 

  • Reubi JC, Cortes R, Maurer R, Probst A, Palacios JM (1986) Distribution of somatostatin receptors in the human brain: an autoradiographic study. Neuroscience 18: 329–346

    Google Scholar 

  • Royston MC, Slater P, Simpson MDC, Deakin JFW (1991) Analysis of laminar distribution of kappa opiate receptor in human cortex: comparison between schizophrenia and normal. J Neurosci Meth 36: 145–153

    Google Scholar 

  • Sadoul JL, Checler F, Kitabgi P, Rostene W, Javoy-Agid F, Vincent JP (1984) Loss of high affinity neurotensin receptors in substantia nigra from parkinsonian subjects. Biochem Biophys Res Commun 125: 395–404

    Google Scholar 

  • Sarrieau A, Javoy-Agid F, Kitabgi P, Dussaillant M, Vial M, Vincent JP, Agid Y, Rostene WH (1985) Characterization and autoradiographic distribution of neurotensin binding sites in the human brain. Brain Res 348: 375–380

    Google Scholar 

  • Saunders RC, Rosene DL (1988) A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey I. Convergence in the entorhinal, prohinal and perirhinal cortices. J Comp Neurol 271: 153–184

    Google Scholar 

  • Saunders RC, Rosene DL (1995) Non-hippocampal entorhinal efferents in the rhesus monkey I. Subcortical projections (submitted)

  • Saunders RC, Krimer LS, Hyde TM (1995) The entorhinal cortex in the human: cytoarchitectonic organization and comparison with rhesus monkey (submitted)

  • Schotte A, Leysen JE, Laduron PM (1986) Evidence for a displaceable non-specific [3H]neurotensin binding site in rat brain. Naunyn Schmiedebergs Arch Pharmacol 333: 400–405

    Google Scholar 

  • Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169: 347–370

    Google Scholar 

  • Szigethy E, Quirion R, Beaudet A (1990) Distribution of125I-neurotensin binding sites in human forebrain: comparison with the localization of acetylcholinesterase. J Comp Neurol 297: 487–498

    Google Scholar 

  • Uhl GR, Kuhar MJ (1984) Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra. Nature 309: 350–352

    Google Scholar 

  • Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95: 39–59

    Google Scholar 

  • Von Bonin G, Bailey P (1947) The neocortex of the macaca mulatta. Univ Illinois Press, Urbana IL

    Google Scholar 

  • Witter MP, Van Hoesen GW, Amaral DG (1989) Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9: 216–228

    Google Scholar 

  • Wolf SS, Hyde TM, Moody TW, Saunders RC, Weinberger DR, Kleinman JE (1994) Autoradiographic characterization of125I-neurotensin binding sites in human entorhinal cortex. Brain Res Bull 35: 353–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, S.S., Hyde, T.M., Saunders, R.C. et al. Autoradiographic characterization of neurotensin receptors in the entorhinal cortex of schizophrenic patients and control subjects. J. Neural Transmission 102, 55–65 (1995). https://doi.org/10.1007/BF01276565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276565

Keywords

Navigation