Skip to main content
Log in

Experimental determination of oxygen thermal conductivity in the gaseous phase (300–1000°K)

  • Published:
Journal of engineering physics Aims and scope

Abstract

Experimental values of oxygen thermal conductivity are presented for the temperature interval 300–1000°K at a pressure of ∼105 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. Geir and K. Schäfer, “Transportphäsenomene in Temperaturgebiet bis 1100°C,” Allg. Waermetechnik,10, No. 4, 70–74 (1961).

    Google Scholar 

  2. A. A. Westenberg and N. de Haas, “Gas thermal conductivity studies at high temperatures,” Phys. Fluids,5, No. 3, 266–273 (1962).

    Google Scholar 

  3. P. C. Jain and S. S. Saxena, “Thermal conductivity and effective diffusion coefficient for vibrational energy: oxygen (400–1600°K),” Molec Phys.,33, No. 1, 133–138 (1977).

    Google Scholar 

  4. V. K. Lyusternik, L. R. Fokin, and A. V. Lavushchev, “Thermophysical properties of materials at high temperatures,” in: Collected Works of the High Temperature Institute, Academy of Sciences of the USSR [in Russian], Moscow (1978), pp. 114–134.

    Google Scholar 

  5. N. B. Vargaftik, N. A. Vanicheva, and L. V. Yakush, “Thermal conductivity of D2O in the gas phase,” Inzh.-Fiz. Zh.,25, No. 2, 336–340 (1973).

    Google Scholar 

  6. N. B. Vargaftik and O. N. Oleshchuk, “Temperature dependence of gas therm conductivity,” Izv. Vys. Temp. Inst., No. 6, 7–9 (1946).

    Google Scholar 

  7. J. M. Hellemans, J. Kestin, and S. T. Ro, “The viscosity of oxygen and some of its mixtures with other gases,” Physica,65, No. 2, 362–375 (1973).

    Google Scholar 

  8. H. J. Hanley, R. D. McCarty, and J. U. Sengers, “The viscosity of some gases,” NASA Contractor Report, CR-2440 (1974), pp. 71–75.

  9. J. G. Parker, “Rotational and vibrational relaxation in diatomic gases,” Phys. Fluids,2, No. 4, 449–462 (1959).

    Google Scholar 

  10. V. M. Zhdanov, “Calculation of molecular gas kinetic coefficients from ultrasound measurement data,” Teplofiz. Vys. Temp.,15, No. 2, 286–291 (1977).

    Google Scholar 

  11. A. A. Vasserman, V. A. Tsymarnyi, et al., “Generalization of experimental data on viscosity and thermal conductivity of nitrogen, oxygen, and air at atmospheric pressure,” in: Thermophysical Properties of Substances and Materials, 12th ed. [in Russian], Standartov, Moscow (1978), pp. 58–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 49, No. 1, pp. 94–97, July, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanicheva, N.A., Zaitseva, L.S. & Yakush, L.V. Experimental determination of oxygen thermal conductivity in the gaseous phase (300–1000°K). Journal of Engineering Physics 49, 828–830 (1985). https://doi.org/10.1007/BF01276526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276526

Keywords

Navigation