Skip to main content
Log in

The influence of permanent light and of intermittent light on the reconstitution of the light-harvesting system in regreeningEuglena gracilis

  • Published:
Protoplasma Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The regreening of etiolatedEuglena gracilis under intermittent light of 2 minutes light/98 minutes darkness was re-examined. In contrast to other investigations theEuglena culture medium contained no organic carbon compound. Therefore the known catabolic repression of thylakoid differentiation,i.e., of chlorophyll-protein complex assembly inEuglena gracilis was avoided. Under these conditions the light-harvesting chlorophyll a/b protein complex (LHCP) was assembled and inserted into the thylakoids. This was demonstrated by (i) the presence of chlorophyll b, (ii) the presence of the LHCP apoproteins and (iii) the proof of thylakoid stacking. These results, which are in contrast to earlier observations, are discussed with regard to the different levels of regulation of chloroplast differentiation inEuglena gracilis and in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

continuous light

EDTA:

ethylenediaminetetraacetic acid

IL:

intermittent light

kDa:

kilodalton

LHCP:

lightharvesting chlorophyll a/b protein complex

SDS:

sodium dodecyl sulfate

Tricine:

N-tris(hydroxymethyl)methylglycine

References

  • Anderson JM, Brown JS, Lam E, Malkin R (1983) An integral component of photosystem I of higher plant chloroplasts. Photochem Photobiol 38: 205–210

    Google Scholar 

  • Apel K (1977) The light-harvesting chlorophyll a/b protein complex of the green algaAcetabularia mediterranea. Biochim Biophys Acta 462: 390–402

    Google Scholar 

  • — (1979) Phytochrome-induced appearance of mRNA activity for the apoprotein of the light-harvesting chlorophyll a/b-protein of barley (Hordeum vulgare). Eur J Biochem 97: 183–188

    Google Scholar 

  • —,Kloppstech K (1978) The plastid membranes of barley (Hordeum vulgare): light-induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b-protein. Eur J Biochem 85: 581–588

    Google Scholar 

  • Argyroudi-Akoyunoglou JH, Feleki F, Akoyunoglou G (1971) Formation of two chlorophyll-protein complexes during greening of etiolated bean leaves. Biochem Biophys Res Commun 45: 606–614

    Google Scholar 

  • Barber J (1986) Surface electric charges and protein phosphorylation. In:Staehelin LA, Arntzen CJ (eds) Encyclopedia of plant physiology (NS): Photosynthesis III. Springer, Berlin Heidelberg New York Tokyo, pp 653–664

    Google Scholar 

  • Bartlett SG, Grossman AR, Chua N-H (1982)In vitro synthesis and uptake of cytoplasmically-synthesized chloroplast proteins. In:Edelman M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 1081–1091

    Google Scholar 

  • Bingham S, Schiff JA (1979) Events surrounding the early development ofEuglena chloroplasts. 16. Plastid thylakoid polypeptides during greening. Biochim Biophys Acta 547: 531–543

    Google Scholar 

  • Brandt P (1980) Stadienspezifische QuantitÄtsverÄnderungen der Chlorophyll-Protein-Komplexe CPI und CPII von synchronisierterEuglena gracilis, Stamm Z. Z Pflanzenphysiol 100: 95–105

    Google Scholar 

  • — (1984) Aspects of translational coordination during chloroplast development. In:Wiessner W, Robinson DG, Starr D (eds) Compartments in algal cells and their interactions. Springer, Berlin Heidelberg New York, pp 47–57

    Google Scholar 

  • —,von Kessel B (1983) Cooperation of cytoplasmic and plastidial translation in formation of the photosynthetic apparatus and its stage-specific efficiency. Plant Physiol 72: 616–619

    Google Scholar 

  • —,Kaiser-Jarry K, Wiessner W (1982) Chlorophyll-protein complexes: Variability of CPI, and the existence of two distinct forms of LHCP and a low-molecular-weight chlorophyll-a-protein. Biochim Biophys Acta 679: 404–409

    Google Scholar 

  • Cunningham FX, Schiff JA (1985) Photoisomerization of ζ-carotene stereoisomers in cells ofEuglena gracilis mutant W3 BUL and in solution. Photochem Photobiol 42: 295–307

    Google Scholar 

  • — — (1986) Chlorophyll-protein complexes fromEuglena gracilis. Plant Physiol 80: 223–230

    Google Scholar 

  • Devic M, Schantz R (1984) Light-induced biosynthesis of chlorophyll-binding proteins inEuglena: correlation between the level of mRNA and the accumulation of proteins in the thylakoids. In:Sybesma C (ed) Advances in photosynthesis research, vol IV. Martinus Nijhoff/Dr. Junk, The Hague, Netherlands, pp 575–578

    Google Scholar 

  • Dubertret G, Lefort-Tran M (1981) Functional and structural organization of chlorophyll in the developing photosynthetic membranes ofEuglena gracilis Z. IV. Light-harvesting properties of system II photosynthetic units and thylakoid ultrastructure during greening under intermittent light. Biochim Biophys Acta 634: 52–69

    Google Scholar 

  • — — (1982) Chloroplast molecular structure with particular reference to thylakoids and envelopes. In:Buetow DE (ed) The biology ofEuglena, vol III. Academic Press, New York, pp 253–312

    Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: synthesis, transport, and assembly. Ann Rev Plant Physiol 32: 111–137

    Google Scholar 

  • Gray JC (1982) Use of proteolytic inhibitors during isolation of plastid proteins. In:Edelman M.Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 1093–1101

    Google Scholar 

  • Guidotti G (1980) Membrane proteins: structure and arrangement in the membrane. In:Andreoli TE, Hoffman JF, Fanestil DD (eds) Membrane physiology. Plenum, New York, pp 49–60

    Google Scholar 

  • Hager A, Meyer-Bertenrath T (1962) Verteilungschromatographische Trennung von Chlorophyllen und Carotinoiden grüner Pflanzen an Dünnschichten. Planta 58: 564–568

    Google Scholar 

  • Hoober JK, Marks DB, Keller BJ, Margulis MM (1982) Regulation of accumulation of the major thylakoid polypeptides inChlamydomonas reinhardii y-1 at 25 and 38‡C. J Cell Biol 95: 552–558

    Google Scholar 

  • Kloppstech K, Pfisterer J, Meyer G, Müller M (1982) Control of expression of chloroplast membrane proteins in higher plants. In: Cell function and differentiation. Liss, New York, pp 101–110

    Google Scholar 

  • Koll M, Brandt P, Wiessner W (1980) Hemmung der lichtabhÄngigen Chloroplastenentwicklung etiolierterEuglena gracilis durch Glucose. Protoplasma 105: 121–128

    Google Scholar 

  • Krinsky NI, Gordon A, Stern AT (1964) The appearance of neoxanthin during the regreening of dark-grownEuglena gracilis var. bac. Plant Physiol 39: 441–444

    Google Scholar 

  • Malkin P, Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126: 413–432

    Google Scholar 

  • Markwell JP, Thornber JP, Boggs RT (1979) Higher plant chloroplasts: evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc Natl Acad Sci USA 76: 1233–1235

    Google Scholar 

  • Mackunney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140: 315–322

    Google Scholar 

  • Monroy AF, Schwartzbach SD (1984) Catabolic repression of chloroplast development inEuglena. Proc Natl Acad Sci USA 81: 2786–2790

    Google Scholar 

  • Mullet JE (1983) The amino acid sequence of the polypeptide segment which regulates membrane adhesion (grana stacking) in chloroplasts. J Biol Chem 258: 9941–9948

    Google Scholar 

  • Ryrie IJ (1983) Immunological evidence for apoproteins of the light-harvesting chlorophyll-protein complex in chlorophyll b-less mutant of barley. Eur J Biochem 131: 149–155

    Google Scholar 

  • Schantz R (1985) Mapping of the chloroplast genes coding for the chlorophyll a-binding proteins inEuglena gracias. Plant Science Letters 40: 43–49

    Google Scholar 

  • Schiff JA (1978) Photocontrol of chloroplast development inEuglena. In:Akoyunoglou G (ed) Chloroplast development. Elsevier, Amsterdam, pp 747–767

    Google Scholar 

  • —,Schwartzbach SD (1982) Photocontrol of chloroplast development inEuglena. In:Buetow DE (ed) The biology ofEuglena. Academic Press, New York, pp 313–352

    Google Scholar 

  • Schopfer P, Apel K (1983) Intracellular morphogenesis. In:Shropshire W, Mohr H (eds) Encyclopedia of plant physiology (NS): Photomorphogenesis. Springer, Berlin Heidelberg, New York, pp 258–288

    Google Scholar 

  • Stern AI, Schiff JA, Epstein HT (1964) Studies of chloroplast development inEuglena. V. Pigment biosynthesis, photosynthetic oxygen evolution and carbon dioxide fixation during chloroplast development. Plant Physiol 39: 220–226

    Google Scholar 

  • Tanaka A, Tsuji (1982) Calcium-induced formation of chlorophyll b and light-harvesting chlorophyll a/b-protein complex in cucumber cotyledons in the dark. Biochim Biophys Acta 680: 265–270

    Google Scholar 

  • Taylor WC, Mayfield SP, Martineau B (1984) The role of chloroplast development in nuclear gene expression. In:Davidson EH, Firtel RA (eds) Molecular biology of development. Liss, New York, pp 601–610

    Google Scholar 

  • Thornber JP, Markwell JP, Reinman S (1979) Plant chlorophyllprotein complexes: recent advances. Photochem Photobiol 29: 1205–1216

    Google Scholar 

  • Tobin EM, Silverthorne J (1985) Light regulation of gene expression in higher plants. Ann Rev Plant Physiol 36: 569–593

    Google Scholar 

  • Virgin HI, Egneus H (1983) Control of plastid development in higher plants. In:Shropshire W, Mohr H (eds) Encyclopedia of plant physiology (NS): Photomorphogenesis. Springer, Berlin Heidelberg New York, pp 289–311

    Google Scholar 

  • Wiessner W (1968) EnzymaktivitÄt und Kohlenstoffassimilation bei Grünalgen unterschiedlichen ernÄhrungsphysiologischen Typs. Planta 79: 92–98

    Google Scholar 

  • Winter J, Brandt P (1986) Stage-specific state I-state II-transitions during the cell cycle ofEuglena gracilis. Plant Physiol 81: 548–552

    Google Scholar 

  • Yi LSH, Gilbert CW, Buetow DE (1985) Temporal appearance of chlorophyll-protein complexes and the N,N′-dicyclohexylcarbodiimide-binding coupling factor-subunit III in forming thylakoid membranes ofEuglena gracilis. J Plant Physiol 118: 7–21

    Google Scholar 

  • Zielinski RE, Price CA (1980) Synthesis of thylakoidal membrane proteins by chloroplasts isolated from spinach. J Cell Biol 85: 435–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, P., Winter, J. The influence of permanent light and of intermittent light on the reconstitution of the light-harvesting system in regreeningEuglena gracilis . Protoplasma 136, 56–62 (1987). https://doi.org/10.1007/BF01276318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276318

Keywords

Navigation