Skip to main content
Log in

Inclusions of graniferous tracheary elements in the root hemi-parasiteOlax phyllanthi (Olacaceae)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Xylem tracheary elements containing structural material in their lumina are reported in the haustorium ofOlax phyllanthi. This is the first detailed description of graniferous tracheary elements in the Olacaceae. The contents of the lumen exist occasionally as granules but more frequently as “amorphous” masses and dispersed material, all with the same tubular structure. A tubular ultrastructural form has not previously been reported in graniferous tracheary elements of parasitic angiosperms. The lumen of the tracheary element may also contain crystalloids, with a regular lattice plane configuration, and various coarse and fine fibrils. At the light microscope level much of the luminal contents stains positively for protein. The ultrastructure of the crystalloids and tubular components is also consistent with a principally proteinaceous material. In contrast, the fine fibrillar material stains positively for polysaccharide using the Thiéry reaction on thin sections. With graniferous tracheary elements seemingly no longer conducting sap, the lumen and pit membranes often become secondarily impregnated, apparently by phenolics.

The relationship of the Olacaceae to other Santalales is discussed in terms of comparative graniferous tracheary element structure. The presence of this cell type inO. phyllanthi resembles that in the Santalaceae and root parasitic Loranthaceae, but the diverse ultrastructure and composition of luminal contents inOlax is strikingly different. The proteinaceous composition of crystalloids and other contents with a tubular substructure agrees broadly with the situation in other Santalales, but the presence of polysaccharide fibrils has no known parallel, although this might be a secondary condition. It is suggested thatO. phyllanthi stands further apart in the Santalales than do the root parasites of the Santalaceae and Loranthaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atsatt P (1983) Host-parasite interactions in higher plants. In:Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. 12 c Physiological plant ecology III. Responses to chemical and physical environment. Springer, Berlin Heidelberg New York, pp 519–535

    Google Scholar 

  • Barber CA (1907 a) Studies in root parasitism. The haustorium ofSantalum album. II. The structure of the mature haustorium and the interrelations between host and parasite. Mem Dept Agric India Bot Ser 2, 1: 1–58

    Google Scholar 

  • — (1907 b) Studies in root parasitism. The haustorium ofOlax scandens. Mem Dept Agric India Bot Ser 2, 4: 1–47

    Google Scholar 

  • — (1907 c) Parasitic trees in southern India. Proc Cambridge Philos Soc 14: 246–256

    Google Scholar 

  • Behnke H-D, Eschlbeck G (1978) Dilated cisternae inCapparales—an attempt towards the characterization of a specific endoplasmic reticulum. Protoplasma 97: 351–363

    Google Scholar 

  • Benson M (1910) Root parasitism inExocarpus (with comparative notes on the haustoria ofThesium). Ann Bot 24: 667–677

    Google Scholar 

  • Buvat R., Robert G (1979) Activités golgiennes et origine des vacuoles dans les cellules criblée du protophloème de la racine de l'orge (Hordeum sativum). Ann Sci Nat Bot (Paris) 13e Series 1: 51–66

    Google Scholar 

  • Catesson AM, Moreau M (1985) Secretory activities in vessel contact cells. Israel J Bot 34: 157–165

    Google Scholar 

  • Courtoy R, Simar LJ (1974) Importance of controls for the demonstration of carbohydrates in electron microscopy with silver methenamine or the thiocarbohydrazide-silver proteinate methods. J Microsc (Oxford) 100: 199–211

    Google Scholar 

  • Cresti M, Pacini E, Simoncioli C (1974) Uncommon paracrystalline structures formed in the endoplasmic reticulum of the integumentary cells ofDiplotaxis erucoides ovules. J Ultrastruct Res 49: 218–223

    Google Scholar 

  • De Filipps R (1969) Parasitism inXimenia (Olacaceae). Rhodora 71: 439–443

    Google Scholar 

  • Diáz-RÚiz JR (1975) A highly ordered protein fromPelargonium: structure and cellular localization. J Ultrastruct Res 53: 227–234

    Google Scholar 

  • Dustin P (1984) Microtubules, 2nd ed. Springer, Berlin Heidelberg New York, pp 428

    Google Scholar 

  • Evert RF (1984) Comparative structure of phloem. In:White RA, Dickison WC (eds) Contemporary problems in plant anatomy. Academic Press, Orlando, Florida, pp 145–234

    Google Scholar 

  • Fineran BA (1962) Studies on the root parasitism ofExocarpus bidwillii Hook. f.-I. Ecology and root structure of the parasite. Phytomorphology 12: 339–355

    Google Scholar 

  • — (1963 a) Studies on the root parasitism ofExocarpus bidwillii Hook. f.-II. External morphology, distribution and arrangement of haustoria. Phytomorphology 13: 30–41

    Google Scholar 

  • — (1963 b) Studies on the root parasitism ofExocarpus bidwillii Hook. f.-III. Primary structure of the haustorium. Phytomorphology 13: 42–54

    Google Scholar 

  • — (1963 c) Studies on the root parasitism ofExocarpus bidwillii Hook. f.-IV. Structure of the mature haustorium. Phytomorphology 13: 249–267

    Google Scholar 

  • — 1963 d: Parasitism inExocarpus bidwillii Hook. f. Trans Roy Soc New Zealand Bot 2 (8): 109–119

    Google Scholar 

  • — (1974) A study of “phloeotracheids” in santalaceous haustoria using scanning electron microscopy. Ann Bot 38: 937–946

    Google Scholar 

  • - (1978) Freeze-etching. In:Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier/North Holland Biomédical Press, pp 279–341

  • — (1979) Ultrastructure of differentiating graniferous tracheary elements in the haustorium ofExocarpus bidwillii (Santalaceae). Protoplasma 98: 199–221

    Google Scholar 

  • — (1983) Ultrastructure of graniferous tracheary elements in the terrestrial mistletoeNuytisa floribunda (Loranthaceae). Protoplasma 116: 57–64

    Google Scholar 

  • — (1985) Graniferous tracheary elements in haustoria of root parasitic angiosperms. The Botanical Review 51: 389–441

    Google Scholar 

  • —, (Bullock S (1979) Ultrastructure of graniferous tracheary elements in the haustorium ofExocarpus bidwillii, a root hemiparasite of the Santalaceae. Proc Roy Soc London B 204: 329–343

    Google Scholar 

  • —,Hocking P (1983) Features of parasitism, morphology and haustorial anatomy in loranthaceous root parasites. In:Calder DM, Bernhardt P (eds) The biology of mistletoes. Academic Press, New York, pp 205–227

    Google Scholar 

  • —,Ingerfeld M (1982) Graniferous tracheary elements in the haustorium ofAtkinsonia ligustriana, a root hemi-parasite of the Loranthaceae. Protoplasma 113: 150–160

    Google Scholar 

  • —,Juniper BE, Bullock S (1978) Graniferous tracheary elements in the haustorium of the Santalaceae. Planta 141: 29–32

    Google Scholar 

  • Fisher DB (1968) Protein staining for ribboned epon sections for light microscopy. Histochemie 16: 92–96

    Google Scholar 

  • Gailhofer M, Thaler I, Rucker W (1979) Dilatiertes ER in Kalluszellen und in Zellen von in vitro kultivierten PflÄnzchen vonArmoracia rusticana. Protoplasma 98: 263–274

    Google Scholar 

  • Gunning BES, Hardham AR (1982) Microtubules. Ann Rev Plant Physiol 33: 651–698

    Google Scholar 

  • Herbert DA (1922) The parasitism ofOlax imbricata. Philipp Agric 11 (1): 17–18

    Google Scholar 

  • Hoefert LL (1975) Tubules in dilated cisternae of endoplasmic reticulum ofThlaspi arvense. Am J Bot 62: 756–760

    Google Scholar 

  • JØrgensen LB (1981) Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales. Nordic J Bot 1: 433–445

    Google Scholar 

  • —,Behnke H-D, Mabry TJ (1977) Protein-accumulating cells and dilated cisternae of endoplasmic reticulum in three glucosinolate-containing genera:Armoracia, Capparis, Drypetes. Planta 137: 215–224

    Google Scholar 

  • Kuijt J (1968) Mutual affinities of santalalean families. Brittonia 20: 136–147

    Google Scholar 

  • — (1969) The biology of parasitic flowering plants. University of California Press, Berkeley & Los Angeles, pp 246

    Google Scholar 

  • Lawrence ME, Possingham JV (1984) Observations of microtubule-like structures within spinach plastids. Biol Cell 52: 77–82

    Google Scholar 

  • Marty F (1978) Cytochemical studies on GERL, provacuoles, and vacuoles in root meristematic cells ofEuphorbia. Proc Natl Acad Sci USA 75: 852–856

    Google Scholar 

  • Matile Ph, Moor H (1968) Vacuolation: origin and development of the lysosomal apparatus in root tip cells. Planta 80: 159–175

    Google Scholar 

  • Mazia D, Brewer PA, Alfert M (1953) The cytochemical staining and measurement of protein with mercuric bromophenol blue. Biol Bull 104: 57–67

    Google Scholar 

  • Musselman LJ, Dickison WC (1975) The structure and development of the haustorium in parasitic Scrophulariaceae. J Linn Soc Bot 70: 183–212

    Google Scholar 

  • Ozenda P, Capdepon M (1979) L'appareil haustorial des phanérogames parasites. Rev Gen Bot 86: 235–343

    Google Scholar 

  • Parthasarathy MV, Mühlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 1: 17–36

    Google Scholar 

  • Quan SG, Chi EY, Caplin SM (1974) Tubular structures in endoplasmic reticulum of cultured broccoli. J Ultrastruct Res 48: 92–101

    Google Scholar 

  • Rao LN (1942) Parasitism in the Santalaceae. Ann Bot 6: 131–150

    Google Scholar 

  • Simpson PG, Fineran BA (1970) Structure and development of the haustorium inMida salicifolia. Phytomorphology 20: 236–248

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Google Scholar 

  • Thiéry JP (1967) Mise en evidence des polysaccharides sur coupes fines en microscopie électronique. J Microscop 6: 987–1018

    Google Scholar 

  • Tsivion Y (1978) Physiological concepts of the association between parasitic angiosperms and their hosts—a review. Israel J Bot 27: 103–121

    Google Scholar 

  • Weber HC (1984) Untersuchungen an australischen und neuseelÄndischen Loranthaceae/Viscaceae. 3. Granulahaltige-Xylem-Leitbahnen. Beitr Biol Pflanzen 59: 303–320

    Google Scholar 

  • —,Nietfeld U (1984) Haustorialstruktur und granulahaltige Xylem-Leitbahnen beiArceuthobium oxycedri (DC). M. Bieb. (Viscaceae). Ber Deutsch Bot Ges 97: 421–431

    Google Scholar 

  • Wergin WP, Gruber PJ, Newcomb EH (1970) Fine structural investigations of nuclear inclusions in plants. J Ultrastruct Res 30: 533–557

    Google Scholar 

  • Werth CR, Baird WV, Musselman LJ (1979) Root parasitism inSchoepfia Schreb. (Olacaceae). Biotropica 11: 140–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fineran, B.A., Ingerfeld, M. & Patterson, W.D. Inclusions of graniferous tracheary elements in the root hemi-parasiteOlax phyllanthi (Olacaceae). Protoplasma 136, 16–28 (1987). https://doi.org/10.1007/BF01276314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276314

Keywords

Navigation