Skip to main content
Log in

On the spatial structure of a plant cell wall protein. Secondary structure of a cell wall protein fromAcetabularia

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The structure of a purified protein associated with the cell wall polysaccharides of the marine green algaeAcetabularia (Polyphysa) cliftonii has been studied by means of X-ray diffraction, infrared spectroscopy and circular dichroism. The homogeneous preparation of the cell wall protein has a molecular weight of 14,000, as determined by sodium-dodecylsulfate electrophoresis. Regular layer line reflections on the X-ray diffraction photographs suggest that a distinct order exists in the arrangement of the protein fibrils. Through infrared spectroscopy of thin aqueous films of the protein, as well as of the fibers, it was established that the α-helical structure is predominant in the cell wall protein. The fibers crystallize in a hexagonal unit cell witha=14.5 Å and c=27.0 Å, at a water content of two molecules per residue. Increase in water content causes an increase in thea-axis, but without change in thec-direction, thus keeping the α-helical conformation. Moreover the spectral data in the amide A, I, II, III, and IV-regions show that the cell wall protein has an ordered α-helical conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaven, G. H., andR. E. Holiday, 1952: Ultraviolet adsorption spectra of proteins and amino acids. Adv. Protein Chem.7, 319–386.

    PubMed  Google Scholar 

  • Björk, I., B. Å. Peterson, andK. Sjöquist, 1972: Some physicochemical properties of protein A fromStaphylacoccus aureus. Eur. J. Biochem.29, 579–584.

    PubMed  Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, andF. Smith, 1956: Colorimetric methods for determination of sugars and related substances. Anal. Chem.28, 350–356.

    Google Scholar 

  • Elliot, A., 1953: The infra-red spectra of some optically active and meso-synthetic polypeptides. Proc. Roy. Soc. (London)A 221, 104–114.

    Google Scholar 

  • —, andE. J. Ambrose, 1950: Structure of synthetic polypeptides. Nature165, 921–922.

    PubMed  Google Scholar 

  • Fish, W. W., K. G. Mann, andL. Tanford, 1969: The estimation of polypeptide chain molecular weights by gel filtration in 6 M guanidinium hydrochloride. J. biol. Chem.244, 4989–4994.

    PubMed  Google Scholar 

  • Formanek, H., S. Formanek, andH. Wavra, 1974: A threedimensional atomic model of the murein layer of bacteria. Eur. J. Biochem.46, 279–294.

    PubMed  Google Scholar 

  • Frei, E., andR. D. Preston, 1968: Non-cellulosic structural polysaccharides in algal cell walls. III. Mannan in siphoneous green algae. Proc. Roy. Soc.B 169, 127–145.

    Google Scholar 

  • Göke, L., 1972: Zellwandpolypeptide: Verhalten bei der Morphogenese pflanzlicher Zellen und Mechanismus ihrer Bildung. Diplomarbeit, FB 23, Freie Universität Berlin.

  • —,H. H. Paradies, andG. Werz, 1974: Cell wall polypeptides ofPolyphysa (Acetabularia) cliftonii: Amino acid composition of stalk and cap cell wall polypeptides. Biochem. biophys. Res. Commun.60, 22–27.

    PubMed  Google Scholar 

  • Hämmerling, J., 1944: Zur Lebensweise, Fortpflanzung und Entwicklung verschiedener Dasycladaceen. Arch. Protistenkunde97, 7–56.

    Google Scholar 

  • Huston, J. S., W. W. Fish, K. G. Mann, andC. Tanford, 1972: Studies on the subunit molecular weight of beef heart lactate dehydrogenase. Biochem.10, 3241–3249.

    Google Scholar 

  • Krimm, S., 1962: Infrared spectra and chain conformation of proteins. J. molec. Biol.4, 528–540.

    PubMed  Google Scholar 

  • Lamport, D. T. A., 1967: Hydroxyproline-O-glycosidic linkage of the plant cell wall glycoprotein Extensin. Nature216, 1322–1324.

    Google Scholar 

  • Lowry, D. H., N. A. Rosebrough, A. L. Farr, andR. J. Randall, 1951: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275.

    PubMed  Google Scholar 

  • Mitsui, J., 1973: Hydration-dependent α-β-transconformation of sodium poly-L-glutamate as abserved by X-ray diffraction. Biopolymers12, 1781–1786.

    Google Scholar 

  • Miyazawa, T., andR. E. Blaut, 1961: The infrared spectra of polypeptides in various conformations: Amide I and II bands. J. Amer. Chem. Soc.83, 712–719.

    Google Scholar 

  • Paradies, H. H., 1977: α-β-transition of protein S 4 fromE. coli ribosomes. Submitted to: Macromolecules.

  • —, andA. Franz, 1976: Geometry of protein S 4 fromE. coli ribosomes. Eur. J. Biochem.67, 23–30.

    Google Scholar 

  • Pauling, L., andR. B. Corey, 1951: The structure of hair, muscle and related proteins. Proc. nat. Acad. Sci. (US.)37, 261–271.

    Google Scholar 

  • Reynolds, J. A., andC. Tanford, 1970: The gross conformation of protein-sodium dodecyl sulfate complexes. J. biol. Chem.245, 5161–5165.

    PubMed  Google Scholar 

  • Schleifer, K. H., andO. Kandler, 1972: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev.36, 407–477.

    PubMed  Google Scholar 

  • Shapiro, A. L., E. Vinuela, andJ. V. Maizel, 1967: Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. biophys. Res. Commun.28, 815–820.

    PubMed  Google Scholar 

  • Shumeli, Z., andW. Traub, 1965: Hydration-dependent α-β-transition of poly-lysine. J. molec. Biol.12, 205–214.

    PubMed  Google Scholar 

  • Susi, H., S. N. Timasheff, andL. Stevens, 1967: Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. J. biol. Chem.242, 5460–5466.

    PubMed  Google Scholar 

  • Suwalsky, M., andW. Traub, 1972: An X-ray diffraction study of poly-L-arginine hydrochloride. Biopolymers11, 623–632.

    PubMed  Google Scholar 

  • Tanford, L., K. Kawahara, andS. Lapange, 1967: Proteins as random coils. I. Intrinsic viscosities and sedimentation coefficients in concentrated guanidinium chloride. J. Amer. Chem. Soc.89, 729–736.

    Google Scholar 

  • Weidel, W., andH. Pelzer, 1964: Bagshaped macromolecules—a new outlook on bacterial cell walls. Adv. Enzymol.26, 193–232.

    PubMed  Google Scholar 

  • Werz, G., 1970 a: Cytoplasmic control of cell wall formation inAcetabularia. Current Topics in Microbiol.51, 27–62.

    Google Scholar 

  • —, 1970 b: Mechanisms in cell wall formation inAcetabularia. In: Biology ofAcetabularia, pp. 125–144 (Brachet, J., andS. Bonotto, eds.). New York: Academic Press Inc.

    Google Scholar 

  • —, 1974: Fine-structural aspects of morphogenesis inAcetabularia. Int. Rev. Cytol.38, 319–367.

    PubMed  Google Scholar 

  • Zerban, H., M. Wehner, andG. Werz, 1973: Über die Feinstruktur des Zellkerns vonAcetabularia nach Gefrierätzung. Planta (Berl.)114, 239–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradies, H.H., Göke, L. & Werz, G. On the spatial structure of a plant cell wall protein. Secondary structure of a cell wall protein fromAcetabularia . Protoplasma 93, 249–265 (1977). https://doi.org/10.1007/BF01275657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275657

Keywords

Navigation