Skip to main content
Log in

Non-isotropic hausdorff capacity of exceptional sets of invariant potentials

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In the paper we investigate tangential boundary limits of invariant Green potentials on the unit ballB in ℂn,n≥1. LetG(z, w) denote the Green function for the Laplace-Beltrami operator onB, and let λ denote the invariant measure onB. If μ is a non-negative measure, orf is a non-negative measurable function onB,G μ andG f denote the Green potential of μ andf respectively. For ξ∈SB, τ≥1, andc>0, let

$$\mathcal{T}_{\tau ,c} (\zeta ) = \{ z \in B:\left| {1 - \left\langle {z,\xi } \right\rangle } \right|^\tau< c(1 - \left| z \right|^2 )\} $$

. The main result of the paper is as follows: Letf be a non-negative measurable function onB satisfying

$$\int_B {(1 - \left| w \right|^2 )^\beta f^p (w)d\lambda (w)< \infty } $$

for some β, 0<β<n, and somep>n. Then for each τ, 1≤τ<n/β, there exists a setE t S withH βτ (E t )=0, such that

$$\mathop {\lim }\limits_{\mathop {z \to \zeta }\limits_{z \in \mathcal{T}_{\tau ,c} (\zeta )} } G_f (z) = 0,forall\zeta \in S \sim E_\tau $$

In the above, for 0<α≤n,H α denotes the non-isotropic α-dimensional Hausdorff capacity onS. We also prove that if {a k } is a sequence inB satisfying Σ(1−|a k |2)β<∞ for some β, 0 <β<n, and μ=Σδ ak , where δ a denotes point mass measure ata, then the same conclusion holds for the potentialG μ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cargo, G. T.: Angular and tangential limits of Blaschke products and their successive derivatives,Can. J. Math. 14 (1962), 334–348.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cima, J. and Stanton, C. S.: Admissible limits of M-subharmonic functions,Michigan Math. J. 32 (1985), 211–220.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohn, W. S.: Non-isotropic Hausdorff measure and exceptional sets for holomorphic Sobolev functions,Illinois J. Math. 33 (1989), 673–690.

    MathSciNet  MATH  Google Scholar 

  4. Rudin, W.:Function Theory in the Unit Ball of C n, Springer-Verlag, New York, 1980.

    Book  MATH  Google Scholar 

  5. Stoll, M.: Tangential boundary limits of invariant potentials in the unit ball of Cn,J. Math. Analysis & Appl. 177 (1993), 553–571.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ullrich, D.: Radial limits ofM-subharmonic functions,Trans. Amer. Math. Soc. 292 (1985), 501–518.

    MathSciNet  MATH  Google Scholar 

  7. Wu, Jang-Mei:L p-densities and boundary behaviors of Green potentials,Indiana U. Math. J. 28 (1979), 895–911.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ziomek, L.: On the boundary behavior in the metricL p of subharmonic functions,Studia Math. 29 (1967), 97–105.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, M. Non-isotropic hausdorff capacity of exceptional sets of invariant potentials. Potential Anal 4, 141–155 (1995). https://doi.org/10.1007/BF01275587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275587

Mathematics Subject Classifications (1991)

Key words

Navigation