Skip to main content
Log in

Spectral approximation of banded Laurent matrices with localized random perturbations

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

This paper explores the relationship between the spectra of perturbed infinite banded Laurent matricesL(a)+K and their approximations by perturbed circulant matricesC n (a)+P n KP n for largen. The entriesK jk of the perturbation matrices assume values in prescribed sets Ω jk at the sites (j, k) of a fixed finite setE, and are zero at the sites (j, k) outsideE. WithK EΩ denoting the ensemble of these perturbation matrices, it is shown that

$$\mathop {\lim }\limits_{n \to \infty } \bigcup\limits_{K \in K_\Omega ^E } {{\text{sp}}} {\text{ }}(C_n (a) + P_n KP_n ) = \bigcup\limits_{K \in K_\Omega ^E } {{\text{sp}}} {\text{ (}}L(a) + K)$$

under several fairly general assumptions onE and Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Beam and R. F. Warming: The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices.SIAM J. Sci. Comput. 14 (1993), 971–1006.

    Google Scholar 

  2. A. Böttcher: Pseudospectra and singular values of large convolution operators.J. Integral Equations Appl. 6 (1994), 267–301.

    Google Scholar 

  3. A. Böttcher, M. Embree, and V. I. Sokolov: Infinite Toeplitz and Laurent matrices with localized impurities.Linear Alg. Appl. (to appear).

  4. E. B. Davies: Spectral properties of random non-self-adjoint matrices and operators.Proc. Roy. Soc. London Ser. A 457 (2001), 191–206.

    Google Scholar 

  5. U. Elsner, V. Mehrmann, F. Milde, R. A. Römer, and M. Schreiber: The Anderson model of localization: a challenge for modern eigenvalue methods.SIAM J. Sci. Comput. 20 (1999), 2089–2102.

    Google Scholar 

  6. J. Feinberg and A. Zee: Non-Hermitian localization and delocalization.Phys. Rev. E 59 (1999), 6433–6443.

    Google Scholar 

  7. E. Gallestey, D. Hinrichsen, and A. J. Pritchard: Spectral value sets of closed linear operators.Proc. Roy. Soc. London Ser. A 456 (2000), 1397–1418.

    Google Scholar 

  8. B. Gustafson, H.-O. Kreiss, and A. Sundström: Stability theory of difference approximations for mixed initial boundary value problems, II.Math. Comput. 26 (1972), 649–686.

    Google Scholar 

  9. R. Hagen, S. Roch, and B. Silbermann:C * -Algebras in Numerical Analysis. Marcel Dekker, New York and Basel, 2001.

    Google Scholar 

  10. N. Hatano and D. R. Nelson: Vortex pinning and non-Hermitian quantum mechanics.Phys. Rev. B 77 (1996), 8651–8673.

    Google Scholar 

  11. F. Hausdorff:Set Theory. Chelsea, New York, 1957.

    Google Scholar 

  12. D. Hinrichsen and B. Kelb: Spectral value sets: a graphical tool for robustness analysis.Systems Control Lett. 21 (1993), 127–136.

    Google Scholar 

  13. D. Hinrichsen and A. J. Pritchard: Real and complex stability radii: a survey. In: D. Hinrichsen and B. Mårtenson, eds.,Control of Uncertain Systems (Prog. Systems Control Theory, Vol. 6, Birkhäuser Verlag, Basel 1990), 119–162.

    Google Scholar 

  14. H.-O. Kreiss: Stability theory for difference approximations of mixed initial boundary value problems, I.Math. Comput. 22 (1968), 703–714.

    Google Scholar 

  15. H. J. Landau: On Szegő's eigenvalue distribution theory and non-Hermitian kernels.J. d'Analyse Math. 28 (1975), 335–357.

    Google Scholar 

  16. D. R. Nelson and N. M. Shnerb: Non-Hermitian localization and population biology.Phys. Rev. E 58 (1998), 1383–1403.

    Google Scholar 

  17. L. Reichel and L. N. Trefethen: Eigenvalues and pseudo-eigenvalues of Toeplitz matrices.Linear Algebra Appl. 162–164 (1992), 153–185.

    Google Scholar 

  18. R. Remmert:Funktionentheorie 1. Fourth edition, Springer-Verlag, Berlin and Heidelberg, 1995.

    Google Scholar 

  19. P. Schmidt and F. Spitzer: The Toeplitz matrices of an arbitrary Laurent polynomial.Math. Scand. 8 (1960), 15–38.

    Google Scholar 

  20. G. Strang, X. Liu, S. Ott, and L. He: Localized eigenvectors from localized matrix modifications (in preparation). See also G. Strang: “From the SIAM President”,SIAM News, April 2000, May 2000.

  21. L. N. Trefethen, M. Contedini, and M. Embree: Spectra, pseudospectra, and localization for random bidiagonal matrices.Commun. Pure Appl. Math. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, A., Embree, M. & Lindner, M. Spectral approximation of banded Laurent matrices with localized random perturbations. Integr equ oper theory 42, 142–165 (2002). https://doi.org/10.1007/BF01275512

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275512

MSC 2000

Navigation