Skip to main content
Log in

Cleavage and differentiation in the sea urchin embryo transplantation studies of micromeres

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Micromeres isolated from the 16-cell stage were implanted on mesomeres or macromeres from the same larva. The process of coalescence and the cleavage pattern of the transplanted micromeres were studied by means of light and electron microscopy.

The transplanted micromere shows the same cleavage pattern as the micromerein situ. A close contact is established between the micromere and the host cell and cytoplasmic bridges are found between the cells.

The micromere is dependent on its adjoining blastomere(s) and the rate of cleavage is slowed down when the micromere is isolated. Macromeres and mesomeres are not subjected to a similar change in rate of cleavage when isolated from the rest of the embryo.

The ratio mitochondria/yolk in micromeres is different from that observed in macro- or mesomeres and the possible consequences of this fact are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, I., 1966: Membrane formation and membrane contact during the development of the sea urchin embryo. Z. Zellforsch. mikrosk. Anat.72, 12–21.

    Google Scholar 

  • Balinsky, B. I., 1959: An electron microscopic investigation of the mechanisms of adhesion of the cells in a sea urchin blastula and gastrula. Exp. Cell Res.16, 429–433.

    Google Scholar 

  • Barer, R., S. Joseph, andG. A. Meek, 1960: The origin and fate of the nuclear membrane in meiosis. Proc. Roy. Soc. Lond. B.152, 353–366.

    Google Scholar 

  • Czihak, G., andS. Hörstadius, 1970: Transplantation of RNA-labelled micromeres into animal halves of sea urchin embryos. A contribution to the problem of embryonic induction. Devl. Biol.22, 15–30.

    Google Scholar 

  • Gibbins, J. R., L. G. Tilney, andK. R. Porter, 1969: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. I. The distribution of microtubules. J. Cell Biol.41, 201–226.

    Google Scholar 

  • Hagström, B. E., 1963: The effect of lithium and o-iodosobenzoic acid on the early develop-ment of the sea urchin egg. Biol. Bull. Woods Hole124, 55–64.

    Google Scholar 

  • — andS. Lönning, 1963: The effect of trypsin on the early development of the sea urchin egg. Ark. Zool.15, 377–380.

    Google Scholar 

  • — —, 1964: The rate of development in isolated halves of sea urchin embryos. Sarsia15, 17–22.

    Google Scholar 

  • — —, 1965: Studies of cleavage and development of isolated sea urchin blastome Res. Sarsia18, 1–9.

    Google Scholar 

  • — —, 1967: Cytological and morphological studies of the action of lithium on the development of the sea urchin embryo. Arch. Entwickl.-Mech. Org.158, 1–12.

    Google Scholar 

  • — —, 1969: Time-lapse and electron microscopic studies of sea urchin micromeRes. Protoplasma68, 271–288.

    Google Scholar 

  • Hörstadius, S., 1935: Über die Determination im Verlaufe der Eiachse bei Seeigeln. Pubbl. Staz. Zool. Napoli14, 251–479.

    Google Scholar 

  • —, 1939: The mechanics of sea urchin development, studied by operative methods. Biol. Rev.14, 132–179.

    Google Scholar 

  • Hynes, R. O., andP. R. Gross, 1970: A method for separating cells from early sea urchin embryos. Devl. Biol.21, 383–402.

    Google Scholar 

  • Koehler, O., 1912: Über die Abhängigkeit der Kernplasmarelation von der Temperatur und vom Reifezustand der Eier. Experimentelle Untersuchungen anStrongylocentrotus lividus. Arch. Zellforsch.8, 272–351.

    Google Scholar 

  • Lindahl, P. E., 1953: On a normally occurring reduction-division in somatic cells of the sea urchin embryo. Exp. Cell Res.5, 416–419.

    Google Scholar 

  • Morgan, T. H., 1895: Studies of the “partial” larvae ofSphaerechinus. Arch. Entwickl.-Mech. Org.2, 81–126.

    Google Scholar 

  • Reynolds, S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–211.

    Google Scholar 

  • Theel, H., 1892: On the development ofEchinocyamus posillus (O. F. Müller). Nova Acta R. Soc. Scient. upsal. Ser. III,15 (6), 1–57.

    Google Scholar 

  • Ubisch, L. von, 1936: Über die Organisation des Seeigelkeims. Arch. Entwickl.-Mech. Org.134, 599–643.

    Google Scholar 

  • —, 1937: Die normale Skelettbildung beiEchinocyamus pusillus undPsammechinus miliaris und die Bedeutung dieser Vorgänge für die Analyse der Skelette von Keimblatt-Chimären. Z. wiss. Zool.149, 402–476.

    Google Scholar 

  • —, 1950: Die Entwicklung der Echiniden. Verh. K. ned. Akad. Wet. II,47 (2), 1–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lönning, S., Hagström, B.E. Cleavage and differentiation in the sea urchin embryo transplantation studies of micromeres. Protoplasma 73, 303–322 (1971). https://doi.org/10.1007/BF01273935

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01273935

Keywords

Navigation