Skip to main content
Log in

Temperature conditional cAMP-requiring mutant strains ofChlamydomonas reinhardtii arrest in G1 and are rescued by added cAMP

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Three independent isolates ofChlamydomonas, selected for caffeine resistance, were found to arrest in G1 phase, as determined by quantitative fluorescence measurements of DNA, when grown at a non-permissive temperature. This cell cycle arrest correlated with lowered levels of cAMP and of adenylate cyclase activity. The arrested cells could be rescued by added cAMP but not AMP, hence the defect was not one of general purine metabolism. Back-crosses to wild type revealed that the phenotypes observed result from a combination of three separable mutations. It is clear that the mutations define functions that are more stringently required for cell division than for growth since the mutant strains are able to grow up to fifteen times normal size while blocked at the non-permissive temperature. The possible interaction of cAMP dependent events with division is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP:

adenosine 5′-monophosphate

ATP:

adenosine 5′-triphosphate

BSA:

bovine serum albumin

cAMP:

adenosine 3′,5′-cyclicmonophosphate

db-cAMP:

dibutyryl-cAMP

DNA:

deoxyribonucleic acid

DTT:

dithiothreitol

ɛ-cAMP:

1,N6-etheno-cAMP

EDTA:

ethylenediaminetetraacetic acid

EGTA:

ethylene glycol-bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid

HPLC:

high performance liquid chromatography

LSA:

low sulphur-high salt-acetate medium

LYP LSA:

media containing yeast extract and proteose peptone

M1, 2, 3:

mutants 1, 2, 3

PDE:

phosphodiesterase

TAP:

trisacetate-phosphate medium

TLC:

thin layer chromatography

TYP TAP:

medium containing yeast extract and proteose peptone

References

  • Amrhein N, Filner P (1973) Adenosine 3′,5′-cyclic monophosphate inChlamydomonas reinhardtii: isolation and characterization. Proc Natl Acad Sci USA 70: 1099–1103

    Google Scholar 

  • Assmann SM (1995) Cyclic AMP as a second messenger in higher plants. Plant Physiol 108: 885–889

    PubMed  Google Scholar 

  • Baulieu EE, Godeau F, Schorderet M, Schorderet-Slatkine S (1978) Steroid-induced meiotic division inXenopus laevis oocytes: surface and calcium. Nature 275: 593–598

    PubMed  Google Scholar 

  • Bolwell GP (1995) Cyclic AMP, the relucant messenger in plants. Trend Biochem Sci 20: 492–495

    PubMed  Google Scholar 

  • Bressan RA, Handa AK, Cherniacek J, Filner P (1980) Synthesis and release of adenosine 3′,5′-cyclic monophosphate byChlamydomonas reinhardtii. Phytochemistry 19: 2089–2093

    Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological material. J Biol Chem 237: 1244–1250

    PubMed  Google Scholar 

  • Donnan L, John PCL (1983) Cell cycle control by timer and sizer inChlamydomonas. Nature 304: 630–633

    PubMed  Google Scholar 

  • Gangwani L, Tamot BK, Khurana JP, Maheshwari SC (1991) Identification of 3′,5′-cyclic AMP in axenic cultures ofLemna paucicostata by high performance liquid chromatography. Biochem Biophys Res Commun 178: 1113–1119

    PubMed  Google Scholar 

  • Gelerstein S, Shapira H, Dascal N, Yekuel R, Oron Y (1988) Is a decrease in cAMP a necessary and sufficient signal for maturation of amphibian oocytes? Dev Biol 127: 25–32

    PubMed  Google Scholar 

  • Gilles R, Moka R, Gilles C, Jaenicke L (1985) Cyclic AMP as an intraspheroidal differentiation signal inVolvox carteri. FEBS Lett 184: 309–312

    PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome F and plastocyanin: their sequence in the photosynthetic transport chain ofChlamydomonas reinhardtii. Proc Natl Acad Sci USA 54: 1665–1669

    PubMed  Google Scholar 

  • Harper JDI, Wu L, Sakuanrungsirikul S, John PCL (1995) Isolation and partial characterisation of conditional cell division cycle mutants inChlamydomonas. Protoplasma 186: 149–162

    Google Scholar 

  • Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36: 397–439

    Google Scholar 

  • Jayaswal RK (1991) Physiological and heritable changes in cyclic AMP levels associated with changes in flagellar formation inChlamydomonas reinhardtii (Chlorophyta). J Phycol 27: 587–591

    Google Scholar 

  • John PCL, Sek FJ, Lee MG (1989) A homologue of the cell cycle control protein p34cdc2 participates in the division cycle ofChlamydomonas and a similar protein is detectable in higher plants and remote taxa. Plant Cell 1: 1185–1193

    PubMed  Google Scholar 

  • Johnson LP, MacLeod JK, Summons RE, Hunt N (1980) Design of a stable isotope dilution gas chromatography/mass spectrometric assay for cAMP: comparison with standard protein-binding and radioimmunoassay methods. Anal Biochem 106: 285–290

    PubMed  Google Scholar 

  • — —, Parker CW, Letham DS (1981) The quantitation of adenosine 3′,5′-cyclic monophosphate in cultured tobacco tissue by mass spectrometry. FEBS Lett 124: 119–121

    PubMed  Google Scholar 

  • Katagiri F, Lam E, Chua N-H (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340: 727–730

    PubMed  Google Scholar 

  • Kooijman R, De Wildt P, Van Den Briel W, Tan S-H, Musgrave A, Van Den Ende H (1990) Cyclic AMP is one of the intracellular signals during the mating ofChlamydomonas eugametos. Planta 181: 529–537

    Google Scholar 

  • Kuhl A, Lorenzen H (1964) Handling and culturing ofChlorella. Methods Cell Physiol 1: 159–187

    Google Scholar 

  • Lien T, Knutsen G (1976) Synchronised cultures of a wall-less mutant ofChlamydomonas reinhardtii. Arch Microbiol 108: 189–194

    PubMed  Google Scholar 

  • Matsumoto K, Uno I, Oshima Y, Ishikawa T (1982) Isolation and characterisation of yeast mutants deficient in adenylate cyclase and cyclic AMP dependent protein kinase. Proc Natl Acad Sci USA 77: 541–545

    Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983) Control of cell division inSaccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP dependent protein kinase. Exp Cell Res 146: 151–161

    PubMed  Google Scholar 

  • Newton RP, Brown EG (1986) The biochemistry and physiology of cyclic AMP in higher plants. In: Chadwick CM, Garrod DR (eds) Hormones, receptors and cellular interactions in plants. Cambridge University Press, Cambridge, pp 115–153

    Google Scholar 

  • Nicholl DST, Schloss JA, John PCL (1988) Tubulin gene expression in theChlamydomonas reinhardtii cell cycle: elimination of environmentally induced artifacts and the measurement of tubulin mRNA levels. J Cell Sci 89: 397–403

    PubMed  Google Scholar 

  • Nurse P (1985) Cell cycle control genes in yeasts. Trends Genet 1: 51–55

    Google Scholar 

  • Pasquale SM, Goodenough UW (1987) Cyclic AMP functions as a primary sexual signal in gametes ofChlamydomonas reinhardtii. J Cell Biol 105: 2279–2292

    PubMed  Google Scholar 

  • Polya GM, Chung R, Menting J (1991) Resolution of a higher plant protein kinase similar to the catalytic subunit of cyclic AMP-dependent protein kinase. Plant Sci 79: 37–45

    Google Scholar 

  • Riddle JC, Hsie AW (1978) An effect of cell cycle position on ultraviolet-light-induced mutagenesis in Chinese hamster ovary cells. Mutation Res 52: 409–420

    PubMed  Google Scholar 

  • Rollins MJ, Harper JDI, John PCL (1983) Synthesis of individual proteins, including tubulins and chloroplast membrane proteins in synchronous cultures of the eukaryoteChlamydomonas reinhardtii. Elimination of periodic changes in protein synthesis and enzyme activity under constant environmental conditions. J Gen Microbiol 129: 1899–1919

    Google Scholar 

  • Rozengurt E, Mendoza SA (1985) Synergistic signals in mitogenesis: role of ion fluxes, cyclic nucleotides and protein kinase in Swiss 3T3 cells. J Cell Sci Suppl 3: 229–242

    PubMed  Google Scholar 

  • Sakuanrungsirikul S (1989) Cyclic AMP and theChlamydomonas reinhardtii cell division cycle. PhD thesis, Australian National University, Canberra, Australia

    Google Scholar 

  • Salomon Y (1979) Adenylate cyclase assay. In: Brooker G, Greengard P, Robison GA (eds) Advances in cyclic nucleotide research, vol. 10. Raven Press, New York, pp 35–55

    Google Scholar 

  • Secrist JA, Barrio JR, Leonard NJ, Weber G (1972) Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry 11: 3499–3506

    PubMed  Google Scholar 

  • Sharaf MA, Rooney DW (1982) Changes in cyclic nucleotide levels correlated with growth, division and morphology inChlamydomonas chemostat culture. Biochem Biophys Res Commun 105: 1461–1465

    PubMed  Google Scholar 

  • Spector P (1978) Refinement of the Coomassie Blue method of protein quantitation. Anal Biochem 86: 142–146

    PubMed  Google Scholar 

  • Spiteri A, Viratelle OM, Raymond P, Rancillac M, Labouesse J, Pradet A (1989) Artefactual origins of cyclic AMP in higher plant tissues. Plant Physiol 91: 624–628

    Google Scholar 

  • Sueoka N, Chiang K-S, Kates JR (1967) Deoxyribonucleic acid replication in meiosis ofChlamydomonas reinhardtii I. Isotopic transfer experiments with a strain producing eight zoospores. J Mol Biol 25: 47–66

    PubMed  Google Scholar 

  • Thompson WJ, Terasaki WL, Epstein PM, Strada SJ (1979) Assay of cyclic nucleotide PDE and resolution of multiple molecular forms of the enzyme. In: Brooker G, Greengard P, Robinson GA (eds) Advances in cyclic nucleotide research, vol 10. Raven Press, New York, pp 69–92

    Google Scholar 

  • Unger MW, Hartwell LH (1976) Control of cell division inSaccharomyces cerevisiae by methionyl-tRNA. Proc Natl Acad Sci USA 73: 1664–1668

    PubMed  Google Scholar 

  • Wasserman WJ, Pinto LH, O'Connor CM, Smith LD (1980) Progesterone induces a rapid increase in [Ca2+] ofXenopus laevis oocytes. Proc Natl Acad Sci USA 77: 1534–1536

    PubMed  Google Scholar 

  • Wojcik W, Olianas M, Parenti M, Gentleman S, Neff NH (1981) A simple fluorometric method for cAMP: application to studies of brain adenylate cyclase activity. J Cyclic Nucleotide Res 7: 27–35

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuanrungsirikul, S., Hocart, C.H., Harper, J.D.I. et al. Temperature conditional cAMP-requiring mutant strains ofChlamydomonas reinhardtii arrest in G1 and are rescued by added cAMP. Protoplasma 192, 159–167 (1996). https://doi.org/10.1007/BF01273888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01273888

Keywords

Navigation