Pineal response after pyridoxine test in children

Summary

To characterize the pineal response to pyridoxine, plasma melatonin was measured in one hundred and twenty children 3 hours after vitamin B6 administration. The children, aged between 1.5 and 8 years, were divided in four groups as follows: a) control day group, grouping 27 children sampled at 9:00 and at 12:00; b) control night group, grouping 29 children sampled at 21:00 and at 24:00; c) pyridoxine day group, grouping 30 children sampled at 9:00, then intravenously (i.v.) injected with 3mg/kg of pyridoxine, and sampled at 12:00; and d) pyridoxine night group, grouping 34 children sampled at 21:00, i.v. injected with 3mg/kg of pyridoxine, and sampled at 24:00. Melatonin concentration was measured by radioimmuno assay. The data obtained showed a significant increase in melatonin levels after pyridoxine administration in the pyridoxine night group (39.87 ± 8.02pg/ml basal vs 88.45 ± 9.21 pg/ml after pyridoxine, p < 0.001). The other groups did not showed significant differences in melatonin concentrations. Statistical analysis shows that the administration of pyridoxine during the nocturnal hours represents a stimulating factor to increase the pineal production of melatonin in children.

This is a preview of subscription content, access via your institution.

References

  1. Acuña-Castroviejo A, Lowenstein P, Rosenstein R, Cardinali DP (1986a) Diurnal variations of benzodiazepine binding in rat cerebral cortex: disruption by pinealectomy. J Pineal Res 3: 101–109

    Google Scholar 

  2. Acuña-Castroviejo D, Rosenstein R, Romeo H, Cardinali DP (1986b) Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats. Neuroendocrinology 43: 24–31

    Google Scholar 

  3. Acuña-Castroviejo D, Fernández B, Del Aguila CM, Gomar MD, Castillo JL (1994) La glándula pineal y los mecanismos de inhibición en el sistema nervioso central. In: Muñoz-Hoyos A, Fernández García JM, Acuña-Castroviejo D (eds) Aspectos morfofuncionales y fisiopatológicos de la glándula pineal. Consideraciones de interés pediátrico. Nuevas Creaciones Médicas, Madrid, pp 165–216

    Google Scholar 

  4. Acuña-Castroviejo D, Escames Rosa G, Macías González M, Muñoz Hoyos A, Molina Carballo A, Montes Ramírez R, Vives Montero F (1995) Neuroprotective role of melatonin and its therapeutical applications. J Pineal Res 19: 57–63

    Google Scholar 

  5. Anton-Tay F (1974) Melatonin: effects on brain function. Adv Biochem Psychopharmacol 11: 315–324

    Google Scholar 

  6. Anton-Tay F, Sepúlveda J, González S (1970) Increase on brain pyridoxal phosphokinase activity following melatonin administration. I. Life Sci 9: 1283–1288

    Google Scholar 

  7. Amorós I (1994) Valoración de la función pineal (doble vertiente: metoxi-indoles y kynurenina) tras una sobrecarga con piridoxina. Thesis, Universidad de Granada

  8. Attanasio A, Borrelli P, Gupta D (1985) Circadian rhythms in serum melatonin from infancy to adolescence. Endocrinology 61(2): 388–390

    Google Scholar 

  9. Bessey OA, Adam DJD, Hansen AE (1957) Intake of vitamin B6 and infantile convulsions: a first approximation of requirements of pyridoxine in infants. Pediatrics 20: 33–44

    Google Scholar 

  10. Cardinali DP (1981) Melatonin: a mammalian pineal hormone. Endocr Rev 2: 327–346

    Google Scholar 

  11. Cavallo A, Richards GE, Meyer WJ, Waldrop RD (1987) Evaluation of 5-hydroxytryptophan administration as a test of pineal function in humans. Horm Res 27: 69–73

    Google Scholar 

  12. Champney TH, Peterson SL (1993) Circadian, seasonal, pineal, and melatonin influences on epilepsy. In: Yu HS, Reiter RJ (eds) Melatonin: biosynthesis, physiological effects and clinical applications. CRC Press, Boca Raton, pp 477–494

    Google Scholar 

  13. Champney TH, Sánchez Forte A, Muñoz Hoyos A, Molina Carballo A, Moreno Madrid F, Acuña Castroviejo D (1995) Anticonvulsant effects of melatonin in humans: two case studies. Soc Neurosci (Abstr): 1964

  14. Coburn SP (1994) A critical review of minimal vitamin B6 requirements for growth in various species with a proposed method of calculation. In: Litwack G (ed) Vitamins and hormones, vol 48. Academic Press, San Diego, pp 259–300

    Google Scholar 

  15. Cruz M, Rodriguez F (1973) Metabolismo del triptófano. Arch Pediatr 141: 505–516

    Google Scholar 

  16. Dolina S, Peeling J, Sutherland G, Pillay N, Greenberg A (1993) Effect of sustained pyridoxine treatment on seizure susceptibility and regional brain amino acid levels in genetically epilepsy-prone BALB/c mice. Epilepsia 34: 33–42

    Google Scholar 

  17. Dollins AB, Zhdanova IV, Wurtman RJ, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci 91: 1824–1828

    Google Scholar 

  18. Escriver CR (1960) Vitamin B6 dependency and infantile convulsions. Pediatrics 25: 62–74

    Google Scholar 

  19. Fernández B, Malde JL, Montero D, Acuña D (1990) Relationship between adenohypophyseal and steroid hormones and variations in serum and urinary melatonin levels during the ovarian cycle, perimenopause and menopause in healthy women. J Steroid Biochem 35: 257–262

    Google Scholar 

  20. Gomar MD, Castillo JL, Del Aguila CM, Fernández B, Acuña-Castroviejo D (1993) Intracerebroventricular injection of naloxone blocks melatonin-dependent brain [3H]flunitrazepam binding. NeuroReport 4: 987–990

    Google Scholar 

  21. Gomar MD, Fernández B, Del Aguila CM, Castillo JL, Luna JD, Acuña-Castroviejo D (1994) Influence of the behaviorally active peptides ACTH1-10 and ACTH4-10 on the melatonin modulation of3H-flunitrazepam receptor binding in the rat cerebral cortex. Neuroendocrinology 60: 252–260

    Google Scholar 

  22. Hellstrom B, Vasella F (1962) Tryptophan metabolism in infantile spasm. Acta Pediatr 51: 665–673

    Google Scholar 

  23. Horwitt MK (1986) Interpretations of requirements for thiamin, riboflavin, niacintryptophan and vitamin E plus comments on balance studies and vitamin B6. Am J Clin Nutr 44: 973–85

    Google Scholar 

  24. Huether G, Poeggeler B, Reimer A, George A (1992) Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 51: 945–953

    Google Scholar 

  25. Huether G, Poeggeler B, Adler L, Rüther E (1993) Effects of indirectly acting 5-HT receptor agonists on circulating melatonin levels in rats. Eur J Pharmacol 238: 249–254

    Google Scholar 

  26. Humlová M, Illnerová H (1992) Entrainment of the rat circadian clock controlling the pineal N-acetyltransferase rhythm depends on photoperiod. Brain Res 584: 226–236

    Google Scholar 

  27. Klein CD (1978) The pineal gland. A model of neuroendocrine regulation. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven Press, New York, pp 303–327

    Google Scholar 

  28. Klein CD, Auerbach DA, Namboodiri MAA, Wheler GHT (1980) Indole metabolism in the mammalian pineal gland. In: Reiter RJ (ed) The pineal gland, vol I. Anatomy and biochemistry, CRC Press, Boca Raton, pp 200–226

    Google Scholar 

  29. Koskiniemi M, Laakso J, Kuurne T, Laipio M, Harhonen M (1985) Indole levels in human lumbar and ventricular cerebrospinal fluid and the effect of L-tryptpphan administration. Acta Neurol Scand 71: 127–132

    Google Scholar 

  30. Lee NS (1988). Dietary pyridoxine interaction with tryptophan or histidine on brain serotonin and histamine metabolism. Chem Behav 29: 559–564

    Google Scholar 

  31. Molina Carballo A, Acuña Castroviejo D, Rodriguez Cabezas T, Muñoz Hoyos A (1994a) Effects of febrile and epileptic convulsions on daily variations in plasma melatonin concentration in children. J Pineal Res 16: 1–9

    Google Scholar 

  32. Molina Carballo A, Muñoz Hoyos A, Rodriguez Cabezas T, Acuña Castroviejo D (1994b) Day-night variations in melatonin secretion by the pineal gland during febrile and epileptic convulsions in children. Psychiat Res 52: 273–283

    Google Scholar 

  33. Moreno Madrid F (1994) Valoración de un test de función pineal en niños con 1-triptófano por vía oral. Thesis, Universidad de Granada

  34. Narbona López E, Rodriguez Cabezas T, Moreno Madrid F, Uberos Fernández J (1994) Metabolismo del triptófano. Su importancia en patología infantil. In: Muñoz Hoyos A, Fernández García JM, Acuña Castroviejo D (eds) Aspectos morfofuncionales y fisiopatológicos de la glándula pineal. Consideraciones de interés pediátrico. Nuevas Creaciones Médicas, Madrid, pp 115–140

    Google Scholar 

  35. Narbona E, Maldonado J, Del Castillo ML, Bayés R, Robles C, Nuñez J, Molina JA (1984) Estudio del metabolismo del triptófano en niños afectos de epilepsia. An Esp Ped 20: 361–367

    Google Scholar 

  36. Namboodiri MAA, Sugden D, Klein DC, Mefford IN (1983) 5-Hydroxy-tryptophan elevates serum melatonin. Science 221: 569–661

    Google Scholar 

  37. Otto, Bessey OA, Adam DJD, Hansen AE (1957) Intake of vitamin B6 and infantile convulsions: a first approximation of requirements of pyridoxine in infants. Pediatrics 20: 33–44

    Google Scholar 

  38. Quay WB (1980) General biochemistry of the pineal gland in mammals. In: Reiter RJ (ed) The pineal gland, vol I. Anatomy and biochemistry. CRC Press, Boca Raton, pp 173–198

    Google Scholar 

  39. Reiter RJ (1986) Normal patterns of melatonin levels in the pineal gland and body fluids of humans and experimental animals. J Neural Transm 21: 35–54

    Google Scholar 

  40. Reiter RJ, Menéndez-Peláez A, Poeggeler B, Tan DX, Pabos MI, Acuña-Castroviejo D (1994) The role of melatonin in the pathophysiology of oxygen radical damage. In: Moller M, Pevet P (eds) Advances in pineal research, vol 8. John Libbey, London, pp 403–412

    Google Scholar 

  41. Reiter RJ, Melchiorri D, Sewerynek E, Barlow-Walden L, Chuang JI, Ortiz GG, Acuña-Castroviejo D (1995) A review of the evidence supporting melatonin's role as antioxidant. J Pineal Res 18: 1–11

    Google Scholar 

  42. Rose DP (1978) The interactions between vitamin B6 and hormones. Vitamins and Hormones 36: 53–99

    Google Scholar 

  43. Sherman H (1954) Pyridoxine and related compounds. Effects of deficiency in animals. In: Sebrel WH, Harris RS (eds) The vitamins, vol 3. Academic Press, New York, pp 265–276

    Google Scholar 

  44. Snyderman SE, Boyer A, Phansalkar SV, Holt LE (1961) Essential aminoacids requirements of infants. Am J Dis Child 102: 163–167

    Google Scholar 

  45. Tomoda A, Miike T, Uezono K, Kawasaki T (1994) A school refusal case with biological rhythm disturbance and melatonin therapy. Brain Dev 16: 71–76

    Google Scholar 

  46. Vivien-Roels B, Pévet P (1993) Melatonin: presence and formation in invertebrates. Experientia 49: 642–647

    Google Scholar 

  47. Yaga K, Reiter RJ, Richardson BA (1993) Tryptophan loading increases daytime serum melatonin levels in intact and pinealectomized rats. Life Sci 52: 1231–1238

    Google Scholar 

  48. Yess N, Price JM, Brown RR, Swan PB, Linkswiller H (1964) Vitamin depletion in man: urinary excretion of tryptophan metabolites. J Nutr 84: 229–236

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muñoz-Hoyos, A., Amorós-Rodríguez, I., Molina-Carballo, A. et al. Pineal response after pyridoxine test in children. J. Neural Transmission 103, 833–842 (1996). https://doi.org/10.1007/BF01273361

Download citation

Keywords

  • Melatonin
  • pyridoxine
  • children
  • pineal function test
  • circadian rhythms