Skip to main content
Log in

Stability of spherical reinforced shells

review

  • Published:
Soviet Applied Mechanics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. G. M. Altukher, D. E. Lipovskii, and V. M. Shun, “Stability of structurally orthotropic spherical shells with variable rigidities in the direction of the meridian,” in: Stability of Three-Dimensional Structures [in Russian], Inzh.-Stroit. Inst., Kiev (1978), pp. 31–34.

    Google Scholar 

  2. I. Ya. Amiro, “Determining the critical parameters of short-term external pressure for spherical shells,” Prikl. Mekh.,17, No. 9, 34–38 (1981).

    Google Scholar 

  3. I. Ya. Amiro, “Stability of ribbed spherical shell under static and dynamic external pressure,” Prikl. Mekh.,17, No. 10, 51–60 (1981).

    Google Scholar 

  4. I. Ya. Amiro and V. A. Zarutskii, Methods of Shell Calculation, Vol. 2, Theory of Ribbed Shells [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  5. I. Ya. Amiro and V. A. Zarutskii, “Research into the dynamics of ribbed shells,” Prikl. Mekh.,17, No. 11, 3–20 (1981).

    Google Scholar 

  6. I. Ya. Amiro and V. A. Zarutskii, “Research on the stability of ribbed shells,” Prikl. Mekh.,19, No. 11, 3–20 (1983).

    Google Scholar 

  7. I. Ya. Amiro, V. A. Zarutskii, and V. G. Palamarchuk, Dynamics of Ribbed Shells [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  8. V. I. Babenko and V. M. Prichko, “Stability loss of spherical shells under external pressure,” Dokl. Akad. Nauk SSSR,260, No. 4, 831–833 (1981).

    Google Scholar 

  9. V. V. Boronov, “Stability for ribbed spherical shells,” in: Calculation of Building Structures, Taking Account of Physical Nonlinearity of Materials under Static and Dynamic Loads [in Russian], Leningrad (1984), pp. 32–35.

  10. V. V. Boronov, R. D. Stepanov, and V. N. Frolov, “Experimental investigation of the stability of ribbed hemispherical shells,” Khim. Mashinostr., No. 10, 30–34 (1978).

    Google Scholar 

  11. D. Bushnell, “Nonlinear axisymmetric buckling of shells of revolution,” Raket. Tekh. Kosmonavt.,5, No. 3, 58–67 (1967).

    Google Scholar 

  12. O. V. Volosovich and S. A. Timashev, “Stability of thin convex reinforced shells,” in: Fourth All-Union Conference on Stability Problems in Constructional Mechanics. Abstracts of Proceedings [in Russian], Moscow (1972), pp. 119–120.

  13. A. S. Vol'mir, Stability of Deformed Systems [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  14. I. V. Vorovich and N. I. Minakova, Results of Science and Technology, Mechanics of Solid Deformable Bodies, Vol. 7, Stability Problems and Numerical Methods in the Theory of Spherical Shells [in Russian], VINITI, Moscow (1974).

    Google Scholar 

  15. K. Z. Galimov and R. G. Surkin, “Work of Kazan' scientists on plate and shell theory,” Issled. Teor. Plast. Oboloch., No. 5, 3–55 (1967).

    Google Scholar 

  16. O. A. Grachev, “Influence of shear deformations on the critical external pressure of a spherical shell,” Prikl. Mekh.,16, No. 8, 119–122 (1980).

    Google Scholar 

  17. O. A. Grachev, “Stability of spherical ribbed shells, taking account of shear deformations and the discreteness of rib distribution,” in: Prediction and Calculation of the Individual Life and Reliability of Mechanical Systems [in Russian], UNTs AN SSSR, Sverdlovsk (1980), pp. 35–37.

    Google Scholar 

  18. O. A. Grachev, “Influence of reinforcement parameters on the stability of ribbed spherical shells,” Prikl. Mekh.,19, No. 5, 49–55 (1983).

    Google Scholar 

  19. O. A. Grachev, “Ribbed spherical shells of minimum weight under external pressure,” in: Three-Dimensional Structures in the Krasnoyarsk Region [in Russian], Krasnoyarskii Politekhnicheskii Institut, Krasnoyarsk (1983), pp. 116–123.

    Google Scholar 

  20. O. A. Grachev, “Influence of rib eccentricity on the stability of spherical shells under external pressure,” Prikl. Mekh.,21, No. 1, 53–60 (1985).

    Google Scholar 

  21. O. A. Grachev, “Rational reinforcement of spherical shells under external pressure,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 4, 78–81 (1985).

    Google Scholar 

  22. O. A. Grachev, “Stability of transversally isotropic reinforced spherical shells,” Strength and Stability of Shells. Proceedings of a Seminar [in Russian], Kazansk. Fiz.-Tekh. Inst., KF AN SSSR (1968), No. 19, Part 1, pp. 72–79.

  23. O. A. Grachev and V. I. Ignatyuk, “Detemining the critical loads of shells of revolutior with eccentric reinforcing elements, taking account of shear deformations,” Prikl. Mekh.,22, No. 6, pp. 36–43 (1986).

    Google Scholar 

  24. O. A. Grachev and V. I. Ignatyuk, “Influence of the properties of the material of shells of revolution with eccentric reinforcing elements on the critical loads,” Mekh. Kompozit. Mater., No. 4, 665–671 (1986).

    Google Scholar 

  25. O. A. Grachev and V. I. Ignatyuk, “Stability of transversally isotropic ribbed shells of revolution,” Stroit. Mekhan. Rasch. Sooruzh., No. 3, 61–64 (1986).

    Google Scholar 

  26. O. A. Grachev and A. S. Pal'chevskii, “Experimental results on the stress-strain state of domes with meridional-annular reinforcement,” Research on the Calculation of Plates and Shells [in Russian], Rostov. Inzh.-Stroit. Inst., Rostov-on-Don (1982), pp. 59–62.

    Google Scholar 

  27. O. A. Grachev and A. S. Pal'chevskii, “Experimental investigation of the stability of ribbed spherical shells under external pressure,” Prikl. Mekh.,19, No. 2, 52–57 (1983).

    Google Scholar 

  28. E. I. Grigolyuka and V. I. Mamai, Mechanics of the Deformation of Spherical Shells [in Russian], Mosk. Univ., Moscow (1983).

    Google Scholar 

  29. P. A. Zhilin and G. A. Kizima, “Spherical strip with meridional reinforcing elements,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 97–105 (1969).

    Google Scholar 

  30. Ya. M. Zil'ber and S. A. Timashev, “Experimental investigation of the stability of domes with radial-annular reinforcement,” in: Abstracts of Proceedings and Reports from the Third All-Union Conference on the Experimental Investigation of Engineering Structures [in Russian], NIISK, Ural'skii Promstroiniiproekt, Sverdlovsk (1973), pp. 16–17.

    Google Scholar 

  31. V. F. Zipalova and A. S. Yudin, “Comparison of schemes for taking account of reinforcement in investigating the stability of a nonsloping spherical dome,” in: Proceeding of the Tenth All-Union Conference on the Theory of Shells and Plates, Kutaisi, 1975 [in Russian], Vol. 1, Metsniereba, Tbilisi (1975), pp. 610–618.

    Google Scholar 

  32. B. Ya. Kavlerchik, A. A. Kozhevnikov, and B. E. Kuznetsov, “Optimal design of reinforced spherical shell,” Prikl. Mekh.,9, No. 10, 119–122 (1973).

    Google Scholar 

  33. R. Crawford and D. Schwarts, “General instability and optimal design of spherical bottoms with waffle reinforcement,” Raket. Tekh. Kosmonavt.,3, No. 3, 164–170 (1965).

    Google Scholar 

  34. V. T. Lizin and V. A. Pyatkin, Design of Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1985).

  35. M. E. Lipnitskii, Dome Coverings for Buildings in a Dry Climate [in Russian], Stroiizdat Leningrad (1981).

    Google Scholar 

  36. A. I. Manevich, Stability and Optimal Design of Reinforced Shells [in Russian], Vishcha Shkola, Kiev-Donetsk (1979).

    Google Scholar 

  37. A. I. Manevich and M. E. Kaganov, “Stability and weight optimization of reinforced spherical shells under external pressure,” Prikl. Mekh.,9, No. 1, 20–26 (1973).

    Google Scholar 

  38. Yu. M. Mauergauz, “General-tangent method in problems of optimizing reinforced shells,” in: Thirteenth All-Union Conference on the Theory of Plates and Shells, Tallin, 1983 [in Russian], Tallin. Politekhn. Inst., Tallin (1983), pp. 13–18.

    Google Scholar 

  39. N. P. Mel'nikov, Metallic Structures Outside the USSR [in Russian], Stroiizdat, Moscow (1971).

    Google Scholar 

  40. F. A. Plotnikov, “Sloping spherical shell reinforced by annular ribs,” in: Research into the Theory and Method of Calculation of Building Structures [in Russian], Moscow (1984), pp. 119–130.

  41. A. V. Pogorelov, Geometric Theory of Shell Stability [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  42. T. V. Polonskaya, “Analysis of the influence of reinforcement schemes on the stress-strain state of a shell of revolution,” in: Spatial Structures in the Krasnoyarsk Region [in Russian], Krasnoyar. Politekhn. Inst., Krasnoyarsk (1983), pp. 147–151.

    Google Scholar 

  43. Yu. M. Pochtman, “Optimizing the design of spherical reinforced shells,” Izv. Vyssh. Uchebn. Zaved., Stroit. Arkhit., No. 3, 40–44 (1976).

    Google Scholar 

  44. G. I. Pshenichnov, Theory of Thin Elastic Grid Shells and Plates [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  45. B. I. Sakharov, “Calculating a thin reinforced spherical shell under an internal uniform pressure,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 10, 86–93 (1965).

    Google Scholar 

  46. B. I. Sakharov, “Thin sloping spherical shells reinforced by rigid elements under an axisymmetric load,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 4, 41–45 (1967).

    Google Scholar 

  47. B. I. Sakharov, “Thin reinforced spherical shells under internal or external pressure,” Tr. Mosk. Aviats. Inst., No. 180, 151–172 (1971).

    Google Scholar 

  48. R. D. Stepanov and V. V. Boronov, “Stability of hemispherical shells with a meridional reinforcing element,” Khim. Mashinostr., No. 10, 25–29 (1978).

    Google Scholar 

  49. R. D. Stepanov, V. N. Frolov, E. V. Vorob'ev, and V. V. Boronov, “Experimental investigation of the stability of smooth and ribbed spherical shells by the photoelasticity method,” in: Proceedings of the Seventh All-Union Conference on the Photoelasticity Method [in Russian], Vol. 4, Tallin (1979), pp. 191–193.

  50. A. A. Syas'kii, “Welded orthotropic spherical shells with reinforcing elements,“ Prikl. Mekh.,21, No. 1, 66–73 (1985).

    Google Scholar 

  51. S. Tillman, “Influence of the distribution of reinforcing elements on the behavior of spherical shells in buckling,” in: International Conference on Three-Dimensional Shell Structures of Coverings for Buildings in Ordinary and Seismic Regions, Alma-Ata, 1977 [in Russian], Stroiizdat, Moscow (1977), pp. 197–198.

    Google Scholar 

  52. S. A. Timashev, Stability of Reinforced Shells [in Russian], Stroiizdat, Moscow (1974).

    Google Scholar 

  53. S. I. Trenin and E. S. Shimusyuk, “Stability of reinforced spherical shells,” in: Theory of Shells and Plates. Proceedings of the Eighth All-Union Conference on the Theory of Shells and Plates [in Russian], Nauka, Moscow (1973), pp. 348–351.

    Google Scholar 

  54. V. I. Tur, “Stability of a preliminarily loaded sloping metallic grid dome reinforced by a three-dimensional tie rod,” Izv. Vyssh. Uchebn. Zaved., Stroit. Arkhit., No. 2, 1–5 (1983).

    Google Scholar 

  55. V. I. Tur, “Stability of a preliminarily loaded sloping grid dome,” Issled. Prostranst. Konstr., No. 4, 116–124 (1983).

    Google Scholar 

  56. I. M. Fedotkin, V. V. Klyavlin, I. K. Koshevoi, et al., “Minimization of the weigth of a waffle spherical shell under a specified critical load,” Vestn. Kiev. Politekh. Inst., Khim. Mashinostr. Tekhnol., No. 22, 66–71 (1985).

    Google Scholar 

  57. V. F. Tsybulin, “Experimental investigation of stability loss of nonsloping spherical shells of variable thickness under the action of uniform external pressure,” Stroit. Mekhan., Gazoaérodin., Proizvod. Letatel. Apprat., No. 2, 207–211 (1974).

    Google Scholar 

  58. V. F. Chizhov, “Stability of a spherical shell with a significantly inhomogeneous stress state,” in: Fourth All-Union Conference on Stability Problems in Constructurional Mechanics. Abstracts of Proceedings [in Russian], Moscow (1972), p. 106.

  59. A. S. Yudin, “Stability of a spherical shell of stepwise-varying rigidity,” Fiz.-Mat. Issled., Rostov. Univ., Rostov-on-Don (1972), pp. 46–51.

    Google Scholar 

  60. K. P. Buchert, “Zur Stabilität grosser doppert dekrummeter and versteifter Schalen,” Stahlbau,34, No. 2, 55–62 (1965).

    Google Scholar 

  61. J. O. Crooker and K. P. Buchert, “Reticular space structures,” J. Struct. Div., Proc. Am. Soc. Civil, Engin.,96, No. 3, 697–700 (1970).

    Google Scholar 

  62. A. R. Jefts, S. Gyha-Majumdar, and M. K. Wanchoo, “Instability behavior of stiffened dome liners under construction conditions,” in: Transcripts of Fourth International Conference on the structural Mechanics of Reactor Technology, San Francisco, California, 1977, Vol. J(a), Amsterdam (1977), j. 5.10, pp. 1–11.

  63. K. Klöppel and O. Jungbluth, “Beitrag zum Durchschlagproblem dünnwandiger Kügelschalen. Versuche und Bemessungsformeln,” Stahlbau,22, No. 6, 121–123 (1953).

    Google Scholar 

  64. K. Klöppel and E. Roos, “Beitrag zum Durchschlagproblem dünnwandiger versteifter und unversteifter Kügelschalen für voll und halbseitige Belastung,” Stahlbaum25, No. 3, 49–60 (1956).

    Google Scholar 

  65. L. Kollar, “Buckling of complete spherical shells and spherical caps,” in: Buckling of Shells, Proceeding of State-of-the-Art Colloquium, University of Stuttgart, May 6–7, 1982, Berlin (1982), pp. 401–425.

  66. G. J. Simitses and C. M. Blackmon, “Shape through buckling of eccentrically stiffened shallow spherical caps,” Int. J. Sol. Struct.,11, No. 9, 1035–1040 (1975).

    Google Scholar 

  67. J. Singer, “Buckling experiments on shells—a review of recent developments,” Sol. Mech. Arch.,7, No. 3, 273–313 (1982).

    Google Scholar 

  68. K. Simino, K. Mitsui, and Y. Ozawa, “An elastic stability analysis for spherical shells,” Bull. JSME,27, No. 224, 153–158 (1984).

    Google Scholar 

  69. S. C. Tillman, “Some effects of rib-reinforcement arrangement on spherical-dome buckling,” Exp. Mech.,18, No. 10, 396–400 (1978).

    Google Scholar 

  70. K. Uchiyama and M. Yamada, “Buckling of orthogonally stiffened and framed spherical shells under external pressure,” in: Shell and Spatial Structural Engineering International symposium, Proceedings of International Symposium on Shell and Spatial Structure, Rio de Janeiro, 19–21 September 1983, London-Plymouth (1984), pp. 220–239.

  71. M. Yamada, “An approximation on the buckling analysis of orthogonally stiffened and framed spherical shells under external pressure,” Shell and Spatial Structure Structural Engineering. Proceedings of an International Symposium on Shell and Spatial Structure, Rio de Janeiro, 19–21 September, 1983.

  72. Ye Zhiming, “The nonlinear stability problem of thin spherical cap with variable thickness,” Acta Mech. Sin.,16, No. 6, 634–638 (1984).

    Google Scholar 

  73. M. S. Zarghame and F. J. Heger, “Buckling of thin concrete domes,” J. Amer. Concr. Inst., No. 6, 487–500 (1983); Proc.,80, 487–500.

    Google Scholar 

Download references

Authors

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 22, No. 11, pp. 3–17, November, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiro, I.Y., Grachev, O.A. Stability of spherical reinforced shells. Soviet Applied Mechanics 22, 1015–1026 (1986). https://doi.org/10.1007/BF01272864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01272864

Navigation