Skip to main content
Log in

Algorithmic properties of maximal orders in simple algebras over Q

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

This paper addresses an algorithmic problem related to associative algebras. We show that the problem of deciding if the index of a given central simple algebra\(\mathcal{A}\) over an algebraic number field isd, whered is a given natural number, belongs to the complexity classN Pco N P. As consequences, we obtain that the problem of deciding if\(\mathcal{A}\) is isomorphic to a full matrix algebra over the ground field and the problem of deciding if\(\mathcal{A}\) is a skewfield both belong toN Pco N P. These results answer two questions raised in [25]. The algorithms and proofs rely mostly on the theory of maximal orders over number fields, a noncommutative generalization of algebraic number theory. Our results include an extension to the noncommutative case of an algorithm given by Huang for computing the factorization of rational primes in number fields and of a method of Zassenhaus for testing local maximality of orders in number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. F. Atiyah and I. G. MacDonald,Introduction to Commutative Algebra, Addison-Wesley, 1969.

  2. L. Babai andL. Rónyai, Computing irreducible representations of finite groups,Mathematics of Computation 55,192 (1990), 705–722.

    Google Scholar 

  3. E. H. Bareiss, Sylvester's identity and multistep integer-preserving Gaussian elimination,Mathematics of Computation 22,103 (1968), 565–578.

    Google Scholar 

  4. W. M. Eberly,Computations for algebras and group representations, Ph.D. Thesis, Dept. of Computer Science, University of Toronto, 1989.

  5. W. M. Eberly, Decomposition of algebras over finite fields and number fields,Computational Complexity,1 (1991), 179–206.

    Google Scholar 

  6. W. M. Eberly, Decompositions of algebras over ℝ and ℂ,Computational Complexity,1 (1991), 207–230.

    Google Scholar 

  7. J. Edmonds, System of distinct representatives and linear algebra,Journal of Research of the National Bureau of Standards 718,4 (1967), 241–245.

    Google Scholar 

  8. M. A. Frumkin, Polynomial time algorithms in the theory of linear diophantine equations,Proc. of FCT'76, Lecture Notes in Computer Science56, Springer-Verlag, 1976, 386–392.

  9. K. Friedl and L. Rónyai, Polynomial time solutions of some problems in computational algebra,Proc. 17th ACM STOC, Providence, Rhode Island, 1985, 153–163.

  10. M. R. Garey andD. S. Johnson,Computers and Intractability: A Guide to the Theory of N P-Completeness, H. Freeman, San Francisco, 1978.

    Google Scholar 

  11. I. N. Herstein,Noncommutative Rings, Mathematical Association of America, 1968.

  12. M. A. Huang, Factorization of polynomials over finite fields and factorization of primes in algebraic number fields,Proc. 16th ACM STOC, Washington, D.C., 1984, 175–182.

  13. K. Ireland and M. Rosen,A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982.

  14. A. Kertész,Lectures on Artinian Rings, Akadémiai Kiadó, Budapest, 1987.

    Google Scholar 

  15. R. Kannan andA. Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix,SIAM J. on Computing 4 (1979), 499–507.

    Google Scholar 

  16. S. Lang,Algebraic Number Theory, Springer-Verlag, 1986.

  17. L. Lovász, Some algorithmic problems on lattices,Theory, of Algorithms, Proc. Colloq. Math. Soc. J. Bolyai, 1984, North Holland, 1985, 323–338.

  18. H. Matsumura,Commutative Ring Theory, Cambridge University Press, 1982.

  19. O. T. O'Meara,Introduction to Quadratic Forms, Springer-Verlag, 1963.

  20. R. S. Pierce,Associative Algebras, Springer-Verlag, 1982.

  21. A. Pizer, An algorithm for computing modular forms on Γ0(N),Journal of Algebra,64 (1980), 340–390.

    Google Scholar 

  22. M. E. Pohst, Three principal tasks of computational algebraic number theory,Number Theory and Applications, Proc. NATO Advanced Study Inst., Kluwer Academic Publishers, 1989, 123–133.

  23. M. E. Pohst and H. Zassenhaus,Algorithmic Algebraic Number Theory, Cambridge University Press, to appear.

  24. I. Reiner,Maximal Orders, Academic Press, 1975.

  25. L. Rónyai, Zero divisors in quaternion algebras,Journal of Algorithms,9 (1988), 494–506.

    Google Scholar 

  26. L. Rónyai, Computing the structure of finite algebras,Journal of Symbolic Computation,9 (1990), 355–373.

    Google Scholar 

  27. H. Zassenhaus, Ein Algorithmus zur Berechnung einer Minimalbasis über gegebener Ordnung,Funktional-Analysis, Birkhäuser, 1967, 90–103.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rónyai, L. Algorithmic properties of maximal orders in simple algebras over Q. Comput Complexity 2, 225–243 (1992). https://doi.org/10.1007/BF01272075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01272075

Subject classifications

Navigation