, Volume 16, Issue 4, pp 521–525 | Cite as

Dense graphs and edge reconstruction

  • L. Pyber


By a well-known result of Nash-Williams if a graphG is not edge reconstructible, then for all\(A \subseteq E(G)\),|A|≡|E(G)| mod 2 we have a permutation ϕ ofV(G) such thatE(G)∩E(Gϕ)=A. Here we construct infinitely many graphsG having this curious property and more than\(|G|\left[ {\sqrt {\log |G|} /2} \right]\) edges.

Mathematics Subject Classification (1991)

05 C 60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. A. Bondy: A graph reconstructor's Manual, in Surveys in Combinatorics 1991, LMS, Lecture Note Series 166 (ed. A. Keedwell) Cambridge Univ. Press, 221–252.Google Scholar
  2. [2]
    C. R. J. Clapham, andJ. Sheehan: Super-free graphs,Ars Combinatoria,33 (1992), 245–257.Google Scholar
  3. [3]
    M. N. Ellingham, L. Pyber, andX. Yu: Claw-free graphs are edge reconstructible,J. Graph Theory,12 (1988), 445–451.Google Scholar
  4. [4]
    I. Krasikov: A note on the edge reconstruction ofK 1,m free graphs,JCT (B),49 (1990), 295–298.Google Scholar
  5. [5]
    L. Lovász: A note on the line reconstruction problem,JCT (B),13 (1972), 309–310.Google Scholar
  6. [6]
    V. Müller: The edge reconstruction hypothesis is true for graphs with more thann logn edges,JCT (B),22 (1977), 281–283.Google Scholar
  7. [7]
    C. St. J. A. Nash-Williams:The reconstruction problem in: Selected topics in graph theory, (1978) (eds. L. W. Beineke and R. J. Wilson) Acad. Press, 205–236.Google Scholar
  8. [8]
    L. Pyber: The edge reconstruction of Hamiltonian graphs,J. Graph Theory,14 (1990), 173–179.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • L. Pyber
    • 1
  1. 1.Mathematical Institute of theHungarian Academy of SciencesBudapestHungary

Personalised recommendations