Skip to main content
Log in

Endothelium, the dynamic interface in cardiac lipid transport

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular endothelium is the dynamic interface in transport of lipid from blood to myocytes in heart and arteries. The luminal surface of endothelium is the site of action of lipoprotein lipase on chylomicrons and VLDL and the site of uptake of fatty acids from albumin. Fatty acids and monoacylglycerols are transported from the lumen in an interfacial continuum of endothelial and myocyte membranes. Lipoprotein lipase is transferred from myocytes to the vascular lumen, and is anchored there, by proteoheparan sulfate in cell membranes. Insulin, needed for synthesis of lipoprotein lipase and esterfication of fatty acids, is captured from the blood stream and delivered to myocytes by endothelial insulin receptors. Fatty acids, monoacylglycerols, lipoprotein lipase and insulin are transported along the same route, but by different mechanisms. The route involves the plasma membrane of endothelium and myocytes, the membrane lining transendothelial channels, and intercellular contacts. (Mol Cell Biochem116: 181–191, 1992)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scow RO, Blanchette-Mackie EJ, Smith LC: Role of capillary endothelium in the clearance of chylomicrons. A model for lipid transport from blood by lateral diffusion in cell membranes. Circ Res 39: 149–161, 1976

    Google Scholar 

  2. Scow RO, Blanchette-Mackie EJ, Smith LC: Transport of lipid across capillary endothelium. Federation Proc 39: 2610–2617, 1980

    Google Scholar 

  3. Wetzel MG, Scow RO: Lipolysis and fatty acid transport in rat heart: electron microscopic study. Am J Physiol 246: C467-C485, 1984

    Google Scholar 

  4. Reinilä A, Blanchette-Mackie EJ, Scow RO: Uptake of plasma triacylglycerol by a muscular artery in the rat: an ultrastructural study. Virchows Arch [Cell Pathol] 47: 67–78, 1984

    Google Scholar 

  5. Scow RO, Blanchette-Mackie EJ: Why fatty acids flow in cell membranes. Prog Lipid Res 24: 197–241, 1985

    Google Scholar 

  6. Cryer A: The role of the endothelium in myocardial lipoprotein dynamics. Mol Cell Biochem 88: 7–15, 1989

    Google Scholar 

  7. Neeley JR, Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36: 413–459, 1974

    Google Scholar 

  8. Whitner JT, Idell-Wenger JA, Rovetto MJ, Neely JR: Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253: 4305–4309, 1976

    Google Scholar 

  9. Zierler KL: Fatty acids as substrate for heart and skeletal muscle. Circ Res 38: 459–463, 1976

    Google Scholar 

  10. Robinson DS: Function of the plasma triglycerides in fatty acid transport. In: M Florkin and EH Stotz (eds) Comprehensive Biochemistry. Elsevier/North-Holland, Amsterdam, 1970, Vol 18, pp 51–116

    Google Scholar 

  11. Linder C, Chernick SS, Fleck TR, Scow RO: Lipoprotein lipase and uptake of chylomicron triglyceride by skeletal muscle of rats. Am J Physiol 231: 860–864, 1976

    Google Scholar 

  12. Idell-Wenger JA, Neely JR: Regulation of uptake and metabolism of fatty acids in muscle. In: JM Dietschy, AM Gotto Jr, and JA Ontko (eds) Disturbances in Lipid and Lipoprotein Metabolism. Am Physiol Soc, Bethesda MD, 1978, pp 269–284

    Google Scholar 

  13. Scow RO, Chernick SS: Mobilization, transport, and utilization of free fatty acids. In: M Florkin and EH Stotz (eds) Comprehensive Biochemistry. Elsevier/North-Holland, Amsterdam, 1970, Vol 18, pp 19–50

    Google Scholar 

  14. Spector AA, Fletcher JE: Transport of fatty acid in the circulation. In: JM Dietschy, AM Gotto Jr, and JA Ontko (eds) Disturbances in Lipid and Lipoprotein Metabolism. Am Physiol Soc, Bethesda MD, 1978, pp 229–249

    Google Scholar 

  15. Weisiger RA: Dissociation from albumin: a potentially ratelimiting step in the clearance of substances by the liver. Proc Natl Acad Sci USA 82: 1563–1567, 1985

    Google Scholar 

  16. Bassingthwaighte JB, Noodleman L, Van der Vusse G, Glatz JFC: Modeling of palmitate transport in the heart. Mol Cell Biochem 88: 51–58, 1989

    Google Scholar 

  17. Blanchette-Mackie EJ, Wetzel MG, Chernick SS, Paterniti JR Jr, Brown WV, Scow RO: Effect of the combined lipase deficiency mutation (cld/cld) on ultrastructure of tissues in mice: diaphragm, heart, brown adipose tissue, lung and liver. Lab Invest 55: 347–362, 1986

    Google Scholar 

  18. Blanchette-Mackie EJ, Masuno H, Dwyer NK, Olivecrona T, Scow RO: Lipoprotein lipase in myocytes and capillary endothelium of heart: immunocytochemical study. Am J Physiol 256: E818-E828, 1989

    Google Scholar 

  19. Scow RO, Chernick SS: Role of lipoprotein lipase during lactation. In: J Borensztajn (ed) Lipoprotein Lipase. Evener Publishers, Inc, Chicago, Ill, 1987, pp 149–185

    Google Scholar 

  20. Small CA, Garton AJ, Yeaman SJ: The presence and role of hormone-sensitive lipase in heart muscle. Biochem J 258: 67–72, 1989

    Google Scholar 

  21. O'Looney P, Maten MV, Vahouny GV: Insulin-mediated modifications of myocardial lipoprotein lipase and lipoprotein metabolism. J Biol Chem 258: 12994–13001, 1983

    Google Scholar 

  22. Schoonderwoerd K, van der Kraaij T, Hiilsmann WC, Stam H: Hormones and triacylglycerol metabolism under normoxic and ischemic conditions. Mol Cell Biochem 88: 129–137, 1989

    Google Scholar 

  23. King GL, Johnson SM: Receptor-mediated transport of insulin across endothelial cells. Science 227: 1583–1586, 1984

    Google Scholar 

  24. Bar RS, Boes M, Sandra A: Vascular transport of insulin to rat cardiac muscle: central role of the capillary endothelium. J Clin Invest 81: 1225–1233, 1988

    Google Scholar 

  25. Cistola DP, Hamilton JA, Jackson D, Small DM: Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry 27: 1881–1888, 1988

    Google Scholar 

  26. Blanchette-Mackie EJ, Scow RO: Lipolysis and lamellar structures in white adipose tissue of young rats: lipid movement in membranes. J Ultrastruct Res 77: 295–318, 1981

    Google Scholar 

  27. Blanchette-Mackie EJ, Scow RO: Movement of lipolytic products to mitochondria in brown adipose tissue of young rats: an electron microscopic study. J Lipid Res 24: 229–244, 1983

    Google Scholar 

  28. Amende LM, Blanchette-Mackie EJ, Chernick SS, Scow RO: Effect of pH on visualization of fatty acids as myelin figures in mouse adipose tissue by freeze-fracture electron microscopy. Biochim Biophys Acta 837: 94–102, 1985

    Google Scholar 

  29. Amende LM, Blanchette-Mackie EJ, Scow RO: Demonstration of fatty acid domains in membranes produced by lipolysis in mouse adipose tissue: a freeze-fracture study. Cell Tissue Res 246: 495–508, 1986

    Google Scholar 

  30. Scow RO, Olivecrona T: Effect of albumin on products formed from chylomicron triacylglycerol by lipoprotein lipasein vitro. Biochim Biophys Acta 487: 472–486, 1977

    Google Scholar 

  31. Sweetser DA, Heuckeroth RO, Gordon JI: The metabolic significance of mammalian fatty-acid binding proteins: abundant proteins in search of a function. Ann Rev Nutr 7: 337–359, 1987

    Google Scholar 

  32. Matarese V, Stone RL, Waggoner DW, Bernlohr DA: Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog Lipid Res 28: 245–272, 1989

    Google Scholar 

  33. Glatz JFC, Van der Vusse GJ: Intracellular transport of lipids. Mol Cell Biochem 88: 37–44, 1989

    Google Scholar 

  34. Scow RO, Desnuelle P, Verger R: Lipolysis and lipid movement in a membrane model: action of lipoprotein lipase. J Biol Chem 254: 6456–6463, 1979

    Google Scholar 

  35. Blanchette-Mackie EJ, Scow RO: Membrane continuities within cells and intercellular contacts in white adipose tissue of young rats. J Ultrastruct Res 77: 277–294, 1981

    Google Scholar 

  36. Blanchette-Mackie EJ, Scow RO: Continuity of intracellular channels with extracellular space in adipose tissue and liver: demonstrated with tannic acid and lanthanum. Anat Rec 203: 205–219, 1982

    Google Scholar 

  37. Blanchette-Mackie EJ, Scow RO: Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons: electron microscope cytochemical study. J Cell Biol 51: 1–25, 1971

    Google Scholar 

  38. Belfrage P, Fredrickson G, Strälfors T, Tornquist H: Adipose tissue lipases. In: B Borgström and HL Brockman (eds) Lipases. Elsevier, Amsterdam, 1984, pp 365–416

    Google Scholar 

  39. Olivecrona T, Bengtsson-Olivecrona G: Lipoprotein lipase from milk — the model enzyme in lipoprotein lipase research. In: Borensztajn (ed) Lipoprotein Lipase. Evener Publishers, Inc, Chicago, 1987, pp 15–58

    Google Scholar 

  40. Scow RO, Masuno H, Schultz CJ, Blanchette-Mackie EJ, Mateo C: Processing and transport of lipoprotein lipase in adipocytes. In: Y Oomura, S Tarui, S Inoue and T Shimuazu (eds) Progress in Obesity Research 1990. John Libbey, London, 1991, pp 229–232

    Google Scholar 

  41. Braun J, Severson DL: Diabetes reduces heparin- and phospholipase C-releasable lipoprotein lipase from cardiomyocytes. Am J Physiol 260: E477-E485, 1991

    Google Scholar 

  42. Saxena U, Klein MG, Goldberg IJ: Transport of lipoprotein lipase across endothelial cells. Proc Natl Acad Sci USA 88: 2254–2258, 1991

    Google Scholar 

  43. Scow RO, Egelrud T: Hydrolysis of chylomicron phosphatidylcholinein vitro by lipoprotein lipase, phospholipase A2 and phospholipase C. Biochim Biophys Acta 431: 538–549, 1976

    Google Scholar 

  44. Smith LC, Scow RO: Chylomicrons: mechanism of transfer of lipolytic products to cells. Prog Biochim Pharmacol 15: 109–138, 1979

    Google Scholar 

  45. Jialal L, Crettaz M, Hachiya HL, Kahn CR, Moses AC, Buzney SM, King GL: Characterization of the receptors for insulin and the insulin-like growth factors on micro- and macrovascular tissues. Endocrinology 117: 1222–1229, 1985

    Google Scholar 

  46. Bottaro DP, Bonner-Weir S, King GL: Insulin receptor recycling in vascular endothelial cells: regulation by insulin and phorbol ester. J Biol Chem 264: 5916–5923, 1989

    Google Scholar 

  47. Bar RS, Dolash S, Dake BL, Boes M: Cultured capillary endothelial cells from bovine adipose tissue: a model for insulin binding and action in microvascular endothelium. Metab Clin Exp 35: 317–322, 1986

    Google Scholar 

  48. Forgue MD, Freychet P: Insulin receptors in the heart muscle: demonstration of specific binding sites and impairment of insulin binding in the plasma membrane of the obese hyperglycemic mouse. Diabetes 24: 715–723, 1975

    Google Scholar 

  49. Smith RM, Jarett L: Quantitative ultrastructural analysis of receptor-mediated insulin uptake into adipocytes. J Cell Physiol 115: 199–207, 1983

    Google Scholar 

  50. De Diego JG, Gorden P, Carpentier J-L: The relationship of ligand receptor mobility to internalization of polypeptide hormones and growth factors. Endocrinology 128: 2136–2140, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scow, R.O., Blanchette-Mackie, E.J. Endothelium, the dynamic interface in cardiac lipid transport. Mol Cell Biochem 116, 181–191 (1992). https://doi.org/10.1007/BF01270586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270586

Key words

Navigation