Skip to main content
Log in

Occurrence and functions of the phosphatidylinositol cycle in the myocardium

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the last decade a great deal of attention was awarded to a signal transduction pathway which is utilized primarily by ‘Ca2+ mobilizing’ signal molecules and which involves the hydrolysis of a quantitatively minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a PtdIns-specific phospholipase C (PLC). The evidence for the existence of receptor-mediated GTP binding protein-coupled PLC in myocardium and its possible functions are briefly summarized. The minireview is concentrated on the following aspects: 1) cellular localization and synthesis of polyphospho-PtdIns from PtdIns, 2) desensitization of the α1-adrenergic agonist and endothelin-1 mediated PtdIns responses, 3) oscillatory Ca2+ transients initiated by Ptdlns(4,5)P2 hydrolysis, 4) polyunsaturated fatty acids as constituents of polyphospho-PtdIns and of the protein kinase C activator 1,2-diacylglycerol (DAG), 5) source other than Ptdlns(4,5)P2 contributing to the stimulated DAG, 6) role of the PtdIns pathway in cardiomyocyte growth and gene expression during the hypertrophic response. (Mol Cell Biochem116: 59–67, 1992)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Phosphatidylinositol 4,5-bisphosphate:

PtdIns(4,5)P2

Phosphatidylinositol 4-monophosphate:

PtdIns(4)P4

Phosphatidylinositol:

PtdIns

Inositol 1,4,5-triphosphate:

Ins(1,4,5)P3

Inositol 1,3,4,5-tetrakisphosphate:

Ins(1,3,4,5)P4

Inositol 1-monophosphate:

Ins(1)P

Inositol 1,4-bisphosphate:

Ins(1,4)P2

Inositol:

Ins

Inositolphosphates:

InsPn

Guanine 5'-triphosphate:

GTP

GTP binding protein:

G-protein

Phosphatidylinositolspecific phospholipase C:

PLC

Protein kinase C:

PKC

1,2-Diacylglycerol:

DAG

Monoacylglycerol:

MAG

cytidyldiphoshate-diacylglycerol:

CDP-DAG

Sarcolemma:

SL

Sarcoplasmic reticulum:

SR

Stearic acid:

18:0

Polyunsaturated fatty acids:

PUFA

Arachidonic acid:

20:4n-6

Linoleic acid:

18:2n-6

Eicosapentaenoic acid:

20:5n-3

Docosahexaenoic acid:

22:6n-3

Phosphatidic acid:

PtdOH

Phospholipase D:

PLD

Phosphatidylcholine:

PtdChol

References

  1. Rana RS, Hokin LE: Role of phosphoinositides in transmembrane signalling. Physiol Rev 70: 115–164, 1990

    Google Scholar 

  2. Michell RH: Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147, 1975

    Google Scholar 

  3. Inoue M, Kishimoto A, Takai Y, Nishizuka Y: Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II Proenzyme and its activation by Ca2+ dependent protease from rat brain. J Biol Chem 252: 7610–7616, 1977

    Google Scholar 

  4. Fain JN: Regulation of phosphoinositide-specific phospholipase C. Biochim Biophys Acta 1053: 81–88, 1990

    Google Scholar 

  5. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341: 197–205, 1989

    Google Scholar 

  6. Nishizuka Y: The molecular heterogeneity of protein kinase C and its implication for cellular regulation. Nature 334: 661–665, 1988

    Google Scholar 

  7. Cockroft S, Gomperts BD: Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314: 534–536, 1985

    Google Scholar 

  8. Rodbell M, Krans HM, Pohl SL, Birnbaumer L: The glucagon sensitive adenyl cyclase system in plasmamembranes of rat liver. J Biol Chem 246: 1872–1876, 1971

    Google Scholar 

  9. Gaut ZN, Huggins CG: Effect of epinephrine on the metabolism of the inositolphosphatides in rat heartin vivo. Nature 212: 612–613, 1966

    Google Scholar 

  10. Kiss Z, Farkas T: The effect of isoproterenol on the metabolism of phosphatidylinositol by rat heartin vitro. Biochem Pharmacol 24: 999–1002, 1975

    Google Scholar 

  11. Quist E, Sanches M: Alpha-adrenergic drugs induce a phospholipid effect in heart. Proc West Pharmacol Soc 26: 333–335, 1983

    Google Scholar 

  12. Quist E: Evidence for a carbachol-stimulated phosphatidylinositol effect in the heart. Biochem Pharmacol 31: 3130–3133, 1982

    Google Scholar 

  13. Sekar MC, Roufogalis BD: Comparison of muscarinic and αadrenergic receptors in rat atria based on phosphomositide turnover. Life Sci 35: 1527–1533, 1984

    Google Scholar 

  14. Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA: The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells defined characteristics and unanswered questions. Philos Trans R Soc Lond 296: 123–137, 1981

    Google Scholar 

  15. Berridge MJ, Downes CP, Hanley MR: Lithium amplifies agonist-dependent phosphatidylinositol response in brain and salivary glands. Biochem J 206: 587–595, 1982

    Google Scholar 

  16. Brown SL, Brown JH: Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24: 351–356, 1983

    Google Scholar 

  17. Brown JH, Buxton IL, Brunton LL: α1-Adrenergic and muscarinic cholinergic stimulation of phosphomositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537, 1985

    Google Scholar 

  18. Meij JTA, Lamers JMJ: Alpha-1-adrenergic stimulation of phosphoinositide breakdown in cultured neonatal rat ventricular myocytes. Mol Cell Biochem 88: 73–75, 1989

    Google Scholar 

  19. Steinberg SF, Chow YK, Robinson RB, Bilezikian JP: A pertussis toxin substrate regulates alpha1-adrenergic dependent phosphatidylinositol hydrolysis in cultured rat myocytes. Endocrinology 120: 1889–1895, 1987

    Google Scholar 

  20. Meij JTA, Lamers JMJ: Phorbolester inhibits alpha1-adrenoceptor mediated phosphoinositol breakdown in cardiomyocytes. J Mol Cell Cardiol 21: 661–668, 1989

    Google Scholar 

  21. Baker KM, Singer HA: Identification and characterization of guinea pig angiotensin II ventricular and atria] receptors: coupling to inositolphosphate production. Cite Res 62: 896–904, 1988

    Google Scholar 

  22. Vigne P, Lazdunski M, Frelin C: The inotropic effect of endothelin-1 on rat atria involves hydrolysis of phosphatidylinositol. FEBS Lett 249: 143–146, 1989

    Google Scholar 

  23. Chien WW, Mohabir R, Clusin WT: Effect of thrombin on the calcium homeostasis in chick embryonic heart cells. Receptoroperated calcium entry with inositol trisphosphate and a pertus sis-toxin sensitive G-protein as second messengers. J Clin Invest 85: P1436-P1443, 1990

    Google Scholar 

  24. Leggsyer A, Poggioli J, Renard D, Vassort G: ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol 401: 185–199, 1988

    Google Scholar 

  25. Komuro J, Kaida T, Shibazaki T, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y: Stretching cardiac myocytes stimulates proto-oncogen expression. J Biol Chem 265: 3595–3598, 1990

    Google Scholar 

  26. Von Harsdorf R, Lang R, Fullerton M, Smith AI, Woodcock EA: Right atrial dilatation increases inositol-(1,4,5)trisphosphate accumulation. FEBS Lett 233: 201–205, 1988

    Google Scholar 

  27. Robishaw JD, Foster KA: Role of G proteins in the regulation of the cardiovascular system. Annu Rev Physiol 51: 229–244, 1989

    Google Scholar 

  28. Brown JH, Jones LG: Phosphoinositide metabolism in the heart. In: Putney JW (ed) Phosphoinositides and receptor mechanisms. Alan R. Liss Inc. New York, 1986, pp 245–270

    Google Scholar 

  29. McDonough PM, Goldstein D, Brown JH: Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol biphosphate in chick heart cells: Effect of sodium channel activators. Mol Pharmacol 33: 310–315, 1988

    Google Scholar 

  30. Meij JTA, Bezstarosti K, Panagia V, Lamers JMJ: Phorbolester and the actions of phosphatidylinositol 4,5-bisphosphate specific phospholipase C and protein kinase C in microsomes prepared from cultured cardiomyocytes. Mol Cell Biochem 105: 37–47, 1991

    Google Scholar 

  31. De Chaffoy de Courcelles D: Is there evidence of a role of the phosphoinositol-cycle in the myocardium? Mol Cell Biochem 88: 65–72, 1989

    Google Scholar 

  32. Meij JTA, Panagia V: Catecholamines and Heart Disease: status of phospholipid signalling pathways. In: Ganguly PK (ed) Catecholamines and heart disease. CRC Press, Boca Raton, in press

  33. Quist E, Satumtira N, Powell P: Regulation of polyphosphoinositide synthesis in cardiac membranes. Archs Biochem Biophys 271: 21–32, 1989

    Google Scholar 

  34. Kasinathan C, Xu ZC, Kirchberger MA: Polyphosphoinositide formation in isolated cardiac plasmamembranes. Lipids 24: 818–823, 1989

    Google Scholar 

  35. Varsanyi M, Messer M, Brandt NR, Heilmeyer LMG: Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes. Biochem Biophys Res Commun 138: 1395–1404, 1986

    Google Scholar 

  36. Wolf RA: Synthesis, transfer and phosphorylation of phosphoinositides in cardiac membranes. Am J Physiol 259: C987-C994, 1990

    Google Scholar 

  37. Farkas G, Enyedi A, Sarkadi B, Gardos G: Cyclic AMP-dependent protein kinase and Ca2+-calmodulin stimulate the formation of polyphosphoinositides in a sarcoplasmic reticulum preparation of rabbit heart. FEBS Lett 176: 235–238, 1984

    Google Scholar 

  38. Edes I, Solaro RJ, Kranias EG: Changes in phosphoinositide turnover in isolated guinea pig hearts stimulated with isoproterenol. Circ Res 65: 989–996, 1989

    Google Scholar 

  39. Jakab G, Rapundalo S, Solaro RJ, Kranias EG: Phosphorylation of phospholipids in isolated guinea pigs stimulated with isoprenaline. Biochem 1251: 189–194

  40. Houslay MD: ‘Crosstalk’: a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem 195: 9–27, 1991

    Google Scholar 

  41. Lamers JMJ: Cardiac sarcolemmal calcium transport systems and their modulation by the second messengers cyclic AMP, calcium and phosphoinositide products. In: AM Kidway (ed) Sarcolem mal Biochemistry. CRC Press Inc., Boca Raton, Florida, 1987, vol. II, pp 67–98.

    Google Scholar 

  42. Pierce GN, Panagia V: Role of phosphatidylinositol in cardiac sarcolemmal membrane sodium-calcium exchange. J Biol Chem 264: 15344–15350, 1989

    Google Scholar 

  43. Mesaeli N, Lamers JMJ, Panagia V: Characteristics and Cat2+ sensitivity of polyphosphoinositide synthesis in rat heart sarcolemma. J Mol Cell Cardiol 23(Suppl): 566, 1991

    Google Scholar 

  44. Peterson OH, Wakui M: Oscillating Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: Mechanism of generation. J Membrane Biol 118: 93–105 (1990)

    Google Scholar 

  45. Berridge MJ: Calcium oscillations. J Biol Chem 265: 9583–9586, 1990

    Google Scholar 

  46. Van Heugten HAA, Bezstarosti K, Lamers JMJ: Endothelin-1 induced phosphoinositide breakdown in cardiomyocytes is subject to homologous desensitization. J Mol Cell Cardiol, 23 (Suppl V): 547, 1991

    Google Scholar 

  47. Otani H, Otani H, Das DK: Evidence that phosphoinositide response is mediated by α1-adrenoceptor stimulation and not linked with excitation-contraction coupling in cardiac muscle. Biochem Biophys Res Commun 136: 863–869, 1986

    Google Scholar 

  48. Fisher RA, Robertson SM, Olson MS: Stimulation and homologous desensitization of calcitonin gene-related peptide receptors in cultured beating rat heart cells. Endocrinology 123: 106–122, 1988

    Google Scholar 

  49. Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ: Regulation of adrenergic receptor function by phosphorylation. II Effects of agonist occupancy on phosphorylation of α1- and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem 262: 3106–3112, 1987

    Google Scholar 

  50. Simpson PC, Kariya K, Karns LR, Long CS, Karliner JS: Adrenergic hormones and control of cardiac myocyte growth. Mol Cell Biochem 104: 35–43, 1991

    Google Scholar 

  51. Endoh M, Otomo J, Norota I: Phorbol-12,13-dibutyrate antagonizes the α1-adrenoceptor-mediated positive inotropic effect in the rabbit ventricular myocardium. Br J Clin Pharmac 30: 115S–117S

  52. Vigne P, Breittmayer J-P, Marsault R, Frelin C: Endothelin mobilizes Ca2+ from a caffeine- and ryanodine-insensitive intracellular pool of rat atrial cells. J Biol Chem 265: 6782–6787, 1990

    Google Scholar 

  53. Henrich CJ, Simpson PC: Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to α1-adrenergic and phorbolester stimulation. J Mol Cell Cardiol 20: 1081–1085, 1988

    Google Scholar 

  54. Lamers JMJ: Calcium transport system in cardiac sarcolemma and their regulation by the second messengers cyclic AMP and calcium-calmodulin. Gen Physiol Biophys 4: 143–154, 1985

    Google Scholar 

  55. Benfey BG: Minireview. Function of myocardial α-adrenoceptors. Life Sci 46: 743–757, 1990

    Google Scholar 

  56. Kentish JC, Barsotti RJ, Trevor JL, Mulligan IA, Patel JR, Ferenczi MA: Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3. Am J Physiol 258, H610–H615, 1990

    Google Scholar 

  57. Heathers GP, Corr PB, Rubin LJ: Transient accumulation of inositol (1,3,4,5)-tetrakisphosphate in response to alpha1-adrenergic stimulation in adult cardiac myocytes. Biochem Biophys Res Commun 156: 485–492, 1988

    Google Scholar 

  58. Bell RM, Burns DJ: Lipid activation of protein kinase C. J Biol Chem 266: 4661–4664

  59. Holub BJ: The cellular forms and functions of the inositol phospholipids and their metabolic derivatives. Nutr Rev 45: 65–71, 1987

    Google Scholar 

  60. Lamers JMJ, Dekkers DHW, Mesaeli N, Meij JTA, Panagia V, Van Heugten HAA: The fatty acid composition of (poly)phosphoinositides from rat and pig myocardium. J Mol Cell Cardiol, 23 (Suppl V): 5100, 1991

    Google Scholar 

  61. Reibel DK, Holahan MA, Hock CE: Effects of dietary fish oil on cardiac responsiveness to adrenoceptor stimulation. Am J Physiol 254: H494-H499, 1988

    Google Scholar 

  62. Meij JTA, Bordoni A, Dekkers DHW, Guarnieri C, Lamers JMJ: Alterations in polyunsaturated fatty acid composition of cardiac membrane phospholipids and α1-adrenoceptor mediated phosphatidylinositol turnover. Cardiovasc Res 24: 94–101, 1990

    Google Scholar 

  63. Lamers JMJ, Hartog JM, Verdouw PD, Hülsmann WC: Dietary fatty acids and myocardial function. Bas Res Cardiol 82: 209–221, 1987

    Google Scholar 

  64. Exton JH: Signaling through phosphatidylcholine breakdown. J Biol Chem 265: 1–4, 1990

    Google Scholar 

  65. Liscovitch M: Signal-dependent activation of phosphatidylcholine hydrolysis: role of phospholipase D. Biochem Soc Transact 19: 402–407, 1991

    Google Scholar 

  66. Lindmar R, Löffelholz K, Sandman J: On the mechanisms of muscarinic hydrolysis of choline phospholipids in the heart. Biochem Pharmacol 37: 4689–4695, 1988

    Google Scholar 

  67. Pessin MS, Raben DM: Molecular species analysis of 1,2-diglycerides stimulated by α-thrombin in cultured fibroblasts. J Biol Chem 264: 8729–8738, 1989

    Google Scholar 

  68. Simpson PC, Kariya K-I, Karns LR, Long CS, Karliner JS: Adrenergic hormones and control of cardiac myocyte growth. Mol Cell Biochem 104: 35–43, 1991

    Google Scholar 

  69. Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR: Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and car diac gene expression in ventricular myocytes. A paracrine mechanism for myocardial mechanism for hypertrophy. J Biol Chem 265: 20555–20562, 1990

    Google Scholar 

  70. Dunnmon PM, Iwaki K, Henderson SA, Sen A, Chien KR: Phorbolesters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells. J Mol Cell Cardiol 22: 901–910, 1990

    Google Scholar 

  71. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, Takaku F, Yazaki Y: Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role for protein kinase C activation. J Biol Chem 266: 1265–1268, 1991

    Google Scholar 

  72. Simpson PC: Proto-oncogenes and cardiac hypertrophy. Ann Rev Physiol 51: 189–202, 1988

    Google Scholar 

  73. Fuller S, Gaitanaki CJ, Sugden PH: Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats. Stimulation of translation is mediated through the α1-adrenoceptor. Biochem J 266: 727–736, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamers, J.M.J., Dekkers, D.H.W., Bezstarosti, K. et al. Occurrence and functions of the phosphatidylinositol cycle in the myocardium. Mol Cell Biochem 116, 59–67 (1992). https://doi.org/10.1007/BF01270570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270570

Key words

Navigation