Skip to main content
Log in

Interrelationship between lactate and cardiac fatty acid metabolism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This overview is presented, in the main, to summarize the following aspects of lactate and cardiac fatty acid metabolism:

  1. 1.

    The utilization of exogenous carbohydrates and fatty acids by the heart.

  2. 2.

    The competition between lactate and fatty acids in cardiac energy metabolism.

  3. 3.

    The effect of lactate on endogenous triacylglycerol homeostasis.

  4. 4.

    Lactate-induced impairment of functional recovery of the post-ischemic heart.

  5. 5.

    The effect of lactate on lipid metabolism in the ischemic and post-ischemic heart.

  6. 6.

    The consequences of hyperlactaemia for cardiac imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taegtmeyer H: Carbohydrate interconversions and energy production. Circulation 72: IV-1 – IV-8, 1985

    Google Scholar 

  2. Neely JR, Rovetto MJ, Oram JF: Myocardial utilization of carbohydrate and lipids. Progr Cardiovasc Dis 15: 289–329, 1972

    Google Scholar 

  3. Neely JR, Rovetto MJ, Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36: 413–459, 1974

    Google Scholar 

  4. Bing RJ, Siegel A, Ungar J, Gilbert M: Metabolism of the human heart II. Studies on fat, ketone and aminoacid metabolism. Amer J Med 16: 504–515, 1954

    Google Scholar 

  5. Blain J, Schaeffer H, Siegel A, Bing RJ: Studies of myocardial metabolism. Amer J Med 20: 820–833, 1956

    Google Scholar 

  6. Ballard F, Danforth W, Nagele S, Bing RJ: Myocardial metabolism of fatty acids. J Clin Invest 39: 717–723, 1960

    Google Scholar 

  7. Gordon RS, Cherkes A: Unesterified fatty acids in human blood plasma. J Clin Invest 35: 206–212, 1956

    Google Scholar 

  8. Keul J, Doll E, Steim H, Homburger H, Kern H, Reindell H: Uber den Stoffwechsel des Menschlichen Herzens. I. Die Substrat versorgung des gesundes menschlichen Herzens in Ruhe, während und nach körperlichen Arbeit. Pflügers Arch. 282: 127, 1965

    Google Scholar 

  9. Keul J, Doll E, Steim H, Fleer U, Reindell H: Uber den Stoffwechsel des Menslichen Herzens. III. Der oxydative Stoffwechsel des menschlichen Herzens unter verschiedenen Arbeitsbedingungen. Pflügers Arch 282: 43–53, 1965

    Google Scholar 

  10. Lochner W, Nasseri M: Uber den venösen Sauerstoffdruck, die Einstellung der Coronardurchblutung und den Kohlenhydrat-stoffwechsel des Herzens bei Muskelarbeit. Pflügers Arch 269: 407–416,1959

    Google Scholar 

  11. Goodale WT, Olson R, Hackel DB: Myocardial glucose, lactate and pyruvate metabolism of normal and failing hearts studies by coronary sinus catheterization in man. Fed Proc 9: 49, 1950

    Google Scholar 

  12. Hirche H, Röhner G: Anderungen der Substrat aufnahme des Herzmuskels bei induzierten Anderungen der arteriellen Substrat Konzentration. Pflügers Arch 278: 408–422, 1963

    Google Scholar 

  13. Spitzer JJ, Spitzer JA: Myocardial metabolism in dogs during hemorrhagic shock. Amer J Physiol 222: 101–105, 1972

    Google Scholar 

  14. Spitzer JJ: Effect of lactate infusion on canine myocardial free fatty acid metabolismin vivo. Am J Physiol 226: 213–217, 1974

    Google Scholar 

  15. Drake AJ, Haines JR, Noble MIM: Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14: 65–72, 1980

    Google Scholar 

  16. Rose CP, Goresky CA: Constraints on the uptake of labeled palmitate by the heart. The barriers at the capillary and sarcolemmal surfaces and the control of intracellular sequestration. Cite Res 41: 534–545, 1977

    Google Scholar 

  17. Bielefeld DR, Vary TC, Neely JR: Inhibition of carnitine palmitoyl CoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol 17: 619–625, 1985

    Google Scholar 

  18. Duwel CMB, Visser FC, Van Eenige MJ, Westra G, Roos JP: The influence of lactate and dipyridamole on myocardial fatty acid metabolism traced with the radioiodinated fatty acid 17I-123-iodoheptadecanoic acid in man. Nucl-Med 29: 28–34, 1990

    Google Scholar 

  19. Duwel CMB, Visser FC, Van Eenige MJ, Den Hollander W, Roos JP: The fate of 17-I-123 iodoheptadecanoic acid during lactate loading; its oxidation is strongly inhibited in favor of its esterification. A radiochemical study in the normal canine heart. Nucl-Med 29: 24–27, 1990

    Google Scholar 

  20. Visser FC, Duwel CMB, Van Eenige MJ, Roos JP, Knopp FF, Van der Vusse GJ: Biochemistry of radioiodinated non-esterified fatty acids. Mol Cell Biochem 88: 185–190, 1989

    Google Scholar 

  21. Visser FC, Van Eenige MJ, Duwel CMB, Roos JP: Radioiodinated free fatty acids: can we measure myocardial metabolism? Europ J Nucl Med 12: S20-S23, 1986

    Google Scholar 

  22. Reske SN, Schön S, Schmitt W, Machulla HJ, Knepp R, Winkler C: Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA)-I-123. Europ J Nucl Med 12 (suppl.): 27–31, 1986

    Google Scholar 

  23. Murthy MSR, Pande SV: MalonylCoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA 84: 378–382, 1987

    Google Scholar 

  24. Forsey RGP, Reid K, Brosnan JT: Competition between fatty acids and carbohydrate or ketone bodies as metabolic fuels for the isolated perfused heart. Canad J Physiol Pharmacol 65: 401–406, 1987

    Google Scholar 

  25. Duwel CMB, Visser FC, Van Eenige MJ, Roos JP: Variables of myocardial back-diffusion, determined with 17-iodo-131 heptadecanoic acid in the normal dog heart. Mot Cell Biochem 88: 191–194,1989

    Google Scholar 

  26. Van der Vusse GJ, De Groot MJM: The effect of exogenous lactate and pyruvate on triacylglycerol turnover in the normoxic heart. In: S Sideman, R Beyar, AG Kléber (eds.) Cardiac electrophysiology, circulation and transport. Kluwer Acad Publ Boston, pp 351–361, 1991

  27. Liu M.-S, Spitzer JJ: Oxidation of palmitate and lactate by beating myocytes isolated from adult dog heart. J Mol Cell Cardiol 10: 415–426,1978

    Google Scholar 

  28. De Groot MJM, Willemsen PHM, Coumans WA, Van Bilsen M, Van der Vusse GJ: Lactate-induced stimulation of myocardial triacylglycerol turnover. Biochim Biophys Acta 1006: 111–115, 1989

    Google Scholar 

  29. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H: Enhanced lipolysis of myocardial triglycerides during low-flow ischemia and anoxia in the isolated rat heart. Basic Res Cardiol 84: 165–173, 1989

    Google Scholar 

  30. Hülsmann WC, Stam H, Breeman WAP: Acid and neutral lipases involved in endogenous lipolysis in small intestine and heart. Biochem Biophys Res Commun, 162: 440–448, 1981

    Google Scholar 

  31. Severson DL, Hurley B: Regulation of rat heart triacylglycerol ester hydrolases by free fatty acids, fatty acyl CoA and fatty acylcarnitine. J Mol Cell Cardiol 14: 467–474, 1982

    Google Scholar 

  32. Stam H, Hülsmann WC: Regulation of lipases involved in the supply of substrate fatty acids for the heart. Europ Heart J 6: 158–167,1985

    Google Scholar 

  33. Goldberg DI, Khoo JC: Activation of myocardial neutral triglyceride lipase and neutral cholesterol esterase by cAMP-dependent protein kinase. J Biol Chem 260: 5879–5882, 1985

    Google Scholar 

  34. Schoonderwoerd K, Broekhoven-Schokker S, Hülsmann WC, Stam H: Stimulation of myocardial neutral triglyceride lipase activity by adenosine-3′, 5′-monophosphate: involvement of glycogenolysis. Basic Res Cardiol 82(suppl. I), 29–35, 1987

    Google Scholar 

  35. Bünger R, Mallet RT, Hartman DA: Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and post-ischemic isolated working heart. Eur J Biochem 180: 221–233,1989

    Google Scholar 

  36. Neely JR, Grotyohann LW: Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55: 816–824, 1984

    Google Scholar 

  37. De Groot MJM: The effect of lactate on the normoxic, ischemic and reperfused heart. Thesis. University of Limburg, Maastricht, The Netherlands, 1992

    Google Scholar 

  38. De Groot MJM, Van der Vusse GJ: The effect of lactate on triacylglycerol (TG) metabolism in ischemic and reperfused hearts. J Mol Cell Cardiol 22 (suppl. III): S. 114, 1990

    Google Scholar 

  39. Mickle DAG, Del Nido PJ, Wilson GJ, Harding RD, Romaschin AD: Exogenous substrate preference of the post-ischaemic myocardium. Cardiovasc Res 20: 256–263, 1986

    Google Scholar 

  40. Renstrom B, Nellis SH, Liedtke AJ: Metabolic oxidation of pyruvate and lactate during early myocardial reperfusion. Circ Res 66: 282–288, 1990

    Google Scholar 

  41. Wijns W, Schwaiger M, Huang S.-C, Buxton DC, Hansen H, Selin C, Keen R, Phelps ME, Schelbert HR: Effects of inhibition of fatty acid oxidation on myocardial kinetics of “C-labeled palmitate. Circ Res 65: 1787–1797, 1989

    Google Scholar 

  42. Moret PR: Opening remarks. In: PR Moret, J Weber, JC Haissly, H Denolin (eds.) Lactate physiologic, methodologic and pathologic approach. Springer Verlag, Berlin, pp 195–196, 1980

    Google Scholar 

  43. Messin R: Peripheral lactic acid production in heart disease. In: PR Moret, J Weber, JC Haissly, H Denolin (eds.) Lactate physiologic, methodologic and pathologic approach. Springer Verlag, Berlin, pp 195–196, 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Vusse, G.J., de Groot, M.J.M. Interrelationship between lactate and cardiac fatty acid metabolism. Mol Cell Biochem 116, 11–17 (1992). https://doi.org/10.1007/BF01270563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270563

Key words

Navigation