Skip to main content
Log in

Applications of porous flow-through electrodes. III. Effect of gas evolution on the pore electrolyte resistance

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Gas evolution, within the pores of porous flow-through electrodes, was found to have significant effects on the pore electrolyte resistance. An electrical circuit was used whereby the pore electrolyte resistance was measured during hydrogen evolutionin situ within the porous electrode. The resistance was measured for packed bed electrodes of Cu turnings, Cu wool and Ag wool at various rates of hydrogen evolution. The pore electrolyte resistance increased with the rate of hydrogen evolution in the order Cu turnings > Cu wool (shreds) > Ag wool (hair-like fibres). The gas void fraction was calculated, using Bruggeman's equations at various rates of hydrogen evolution. It was shown that the mode of variation of pore electrolyte resistance with the rate of hydrogen evolution can be explained on the basis of the variations in the gas void fraction. In all cases, it was found that the volume of gas retained within the porous bed depends on the rate of gas evolution rather nonlinearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ibl, E. Adam, J. Venczel and E. Schlach,Chem. Ing. Tech. 43 (1971) 202.

    Google Scholar 

  2. N. Ibl,Electrochim. Acta 24 (1979) 1105.

    Google Scholar 

  3. L. J. J. Janssen,ibid. 23 (1978) 81.

    Google Scholar 

  4. I. Rousar and V. Cezner,ibid. 20 (1975) 289.

    Google Scholar 

  5. F. Hine and K. Murakami,J. Electrochem. Soc. 127 (1980) 292.

    Google Scholar 

  6. Idem, ibid. 128 (1981) 64.

    Google Scholar 

  7. F. Hine, M. Yasuda, R. Nakamura and T. Noda,ibid. 122 (1975) 1185.

    Google Scholar 

  8. P. J. Sides and C. W. Tobias,ibid. 127 (1980) 288.

    Google Scholar 

  9. G. Kreysa and H. J. Kulps,ibid. 128 (1981) 297.

    Google Scholar 

  10. B. Mazza, P. Pedeferri and G. Re,Electrochim. Acta 23 (1978) 87.

    Google Scholar 

  11. C. Oloman,J. Electrochem. Soc. 126 (1979) 1885.

    Google Scholar 

  12. P. R. Vassie and A. C. C. Tseung,Electrochim. Acta 20 (1975) 759.

    Google Scholar 

  13. Idem, ibid. 20 (1975) 763.

    Google Scholar 

  14. Idem, ibid. 21 (1975) 315.

    Google Scholar 

  15. A. V. Neimark, L. M. Pis'men and L. I. Kheifets,Sov. Electrochem. 11 (1975) 580.

    Google Scholar 

  16. Idem, ibid. 11 (1975) 1208.

    Google Scholar 

  17. B. G. Ateya and E. S. Arafat,J. Electrochem. Soc. 130 (1983) 380.

    Google Scholar 

  18. J. S. Newman and W. Tiedman, ‘Advances in Electrochemistry and Electrochemical Engineering’ Vol. 11 (edited by C. Tobias and H. Gerischer) Interscience, New York (1978) p. 353.

    Google Scholar 

  19. L. G. Austin, P. Palasi and R. Klimpel,Adv. Chem. Ser. 47 ACS (1965) 35.

    Google Scholar 

  20. B. G. Ateya, E. S. Arafat and S. A. Kafafi,J. Appl. Electrochem. 7 (1977) 107.

    Google Scholar 

  21. J O'M Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’ Vol. 2, Plenum, New York (1970) p. 1157.

    Google Scholar 

  22. I. Rousar, J. Kacin, E. Lippert, F. Smirous and V. Cezner,Electrochim. Acta 20 (1975) 295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ateya, B.G., El-Shakre, M.E. Applications of porous flow-through electrodes. III. Effect of gas evolution on the pore electrolyte resistance. J Appl Electrochem 14, 367–371 (1984). https://doi.org/10.1007/BF01269937

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01269937

Keywords

Navigation