Advertisement

Qualitas Plantarum

, Volume 26, Issue 1–3, pp 293–319 | Cite as

Plant quality response to uptake of polluting elements

  • A. Cottenie
  • A. Dhaese
  • R. Camerlynck
Article

Abstract

Several mineral elements which are found in excessive amounts in the environment, due to local pollution, influence plant growth and quality. The authors have studied the uptake pattern of some of these elements and their possible accumulation in plants. The contents in plants corresponding with phytotoxicity are experimentally determined. Different cases of harmfull effects towards animals and the problem of criteria for mineral element contamination are discussed, especially with regard to heavy metals and fluorine.

In the second part the influence of mineral elements upon some organic plant constituents is studied. Analytical techniques such as electrophoresis, gel filtration and T.L. chromatography are used for separating some typical quality indicators such as chlorophyl, xantophyll, β-cartotene and protein.

Since Zn is typically an element giving very large content variations in plant tissues, its influence on the mentioned organic quality indicators is described in comparison with the effect of Cu, which is much less variable in the plants.

Keywords

Quality Indicator Mineral Element Zink Local Pollution Quality Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Verschiedene Mineralelemente, die infolge Lokalpollution in überhohen Gehalten in der Umwelt gefunden werden, beeinflussen den Pflanzenwuchs und die Qualität.

Die Autoren haben die Aufnahme von einigen dieser Elemente studiert und ihre mögliche Akkumulation in Pflanzen.

Die Gehalte in Pflanzen, übereinstimmend mit ihrer Phytotoxizität, werden experimentell bestimmt. Mehrere Fälle von schädlichen Effekten auf Tiere und das Problem der Kriterien von einer mineralischen Elementenkontamination werden diskutiert mit Rücksicht auf Schwermetalle und Fluoride.

Im zweiten Teil wird der Einfluß auf mehrere organische Pflanzenbestandteile besprochen. Die Analysenverfahren, Elektrophorese, Gel-Filtration und Dünnschicht-chromatographie wurden verwendet für die Trennung mehrerer typischer Qualitätsindikatoren, wie Chlorophyl, Xantophyll, β-Carotin und Proteine.

Der Einfluß von Zink, dessen Variabilität im Pflanzengewebe auf die genannten organischen Qualitätsindikatoren groß ist, wurde beschrieben im vergleich mit dem Effekt von Kupfer, das in der Pflanze weniger variable ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Allen, M.B. & Arnon, D.I. (1955). Studies on nitrogen — fixing blue-green algae. II. Sodium requirement of Anabaena cylindrica.Physiol. Plantarum 8 653–660.Google Scholar
  2. Arnon, D.I. & Wessel, G. (1953). Vanadium as an essential element for green plants.Nature 172 1039–40.Google Scholar
  3. Blumberg, W. & Reisach, J. (1966). The optical and magnetic properties of copper in Chenopodium Album plastocyanin.Biochem. Biophys. Acta 126 269–273.Google Scholar
  4. Comar, C.L. & Zscheile, F.P. (1942). Analysis of plant extracts for chlorophyll a and b.Plant Physiol. 17 198–214.Google Scholar
  5. Cottenie, A. & Kiekens, L. (1974). Quantitative and Qualitative plant response to extreme nutritional conditions. Proceedings of the 7th International Colloquium Hannover.Google Scholar
  6. Evans, H.J. & Kliewer, M. (1964). Vitamin B12 compounds in relation to the requirements of cobalt for higher plants and nitrogen-fixing organisms.Ann. New York Acad. Sci. 112, Art. 2:735–755.Google Scholar
  7. EWG-Kommission (1971). Vorschlag für eine Verordnung des Rates über den Verkehr mit Futtermitteln, Fassung vom 5.2.1971 — Bundestagsdruck-Sache VI/1854.Google Scholar
  8. Hamp, R. (1973). Uber die Konzentration von Bleiverbindungen in Pflanzenteilen und die Wirkung des Bleiions auf Pflanzenphysiologische und biochemische Prozesse. Ph. D. Thesis, München.Google Scholar
  9. Landbouw Ekonomisch Instituut — Statistieken, Sektie Dokumentatie en Statistische Analyses Ministerie van Landbouw.Google Scholar
  10. Nason, A., Oldewurtel, H.A. & Propst, M. (1952). Role of micronutrient elements in the metabolism of higher plants. I. Changes in oxidative enzyme constitution of tomato leaves deficient in micronutrient elements.Arch. Biochem. Biophys. 38 1–13.Google Scholar
  11. Neish, A.C. (1939). XXXVI Studies on chloroplasts. I. Separation of chloroplasts. A study of factors affecting their flocculation and the calculation of the chloroplast content of the leaf tissue from chemical analysis.Biochem. J. 33 293.Google Scholar
  12. Official methods of Analysis A.O.A.C. Publ. by Ass. Off. Agricul. Chemists Washington 4, DC.Google Scholar
  13. Ostrovskaya, L.K. (1961). The physiological roles of copper and bases in the use of copper fertilizers. Izd — vo Akad. S — Kh. Nauk USSR.Google Scholar
  14. Peive, Ya. V. (1967). Minor elements in enzymatically catalized biochemical processes.Adad. Nauk. SSR, Ser Biol. 1 11–19.Google Scholar
  15. Polikarpochkina, R.T. & Khavkin, E.E. (1972). The role of zinc in nitrogen metabolism of corn.Agrokhemiya 3 77–80.Google Scholar
  16. Polikarpochkina, R.T. & Khavkin, E.E. (1972). The role of zinc in nitrogen metabolism of growing cells Fiz.Rastenii 19 596–603.Engl. transl. Sov. Plant phys. 19: 504–510.Google Scholar
  17. Possingham, J.V. (1956). The effect of mineral nutrition on the content of free amino acids and amides in tomato plants. I. A comparison of effects of deficiencies of copper, zinc, manganese, iron and molybdenum.Austr. J. Soil Sci. 9 539–551.Google Scholar
  18. Prask, J.A. & Plocke, D.J. (1971). A role for zinc in the structural integrity of the cytoplasmic ribosomes of Euglena gracilis.Plant physiol. 48 150–155.Google Scholar
  19. Reed, H.S. (1938). Cytology of leaves affected with ‘little leaf’.Am. J. Bot. 25 174–186.Google Scholar
  20. Shrift, A. (1968). Aspects of selenium metabolism in higher plants.Ann. Rev. Plant phys. 20 475–499.Google Scholar
  21. Shkol'nik, M.Ya. (1963). The significance of trace elements in the life of plants and agriculture of the S.U. Izvd-vo AN SSSR.Google Scholar
  22. Skoog, F. (1940). Relationship between zinc and auxin in the growth of higher plants.Am. J. Bot. 27 939–951.Google Scholar
  23. Steenbjerg, F. (1951). Yield curves and chemical plant analysis.Plant and Soil III 97–109.Google Scholar
  24. Tsui, C. (1948). The role of zinc in auxin synthesis in the tomato plant.Am. J. Bot. 35 172–178.Google Scholar
  25. Vallee, B.L. & Wacker, W.E.C. (1970). ‘Metalloproteins’. In H. Neurath (Ed) The proteins (2nd Ed) Vol. 5. Academic Press N.Y. 192 p.Google Scholar
  26. Whatley, F., Ordin, L. & Arnon, D. (1951). Distribution of micronutrient metals in leaves and chloroplast fragments.Plant Physiol. 26 414.Google Scholar
  27. W.H.O. (1972). Evaluation of certain food additives and the contaminants mercury, lead and cadmium. World Health Organisation, Techn. Rep. Ser., no. 505.Google Scholar
  28. Yuferova, S.G., Saenko, G.W. & Boichenko, E.A. (1969). Copper compounds in plants.Fiz Rastenii 16 8–12 16: 4–8.Google Scholar
  29. Zschelle, F.P. (1941). Plastid pigments with special reference to their physical and photochemical properties and to their analytical methods.Botan Rev. 7 587–648.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1976

Authors and Affiliations

  • A. Cottenie
    • 1
  • A. Dhaese
    • 1
  • R. Camerlynck
    • 1
  1. 1.State UniversityGhentBelgium

Personalised recommendations