Qualitas Plantarum

, Volume 26, Issue 1–3, pp 9–27 | Cite as

Damage to nutritional value of plant proteins by chemical reactions during storage and processing

  • R. L. M. Synge


The nutritive function of proteins for monogastric animals may be simply to supply the body with amino acids. However, the complexities of digestion, absorption and metabolism imply that amino acid composition, determined chemically after hydrolysis, can only be a very rough guide (usually setting upper limits) to the nutritional value of proteins.

Chemical reactions which may affect nutritional values of proteins are discussed at length. Chemical tests, for determining the extent to which these reactions have occurred, are increasing, both in number and usefulness. However, to derive practical benefits from chemical tests, frequent parallel nutritional assessments must be conducted using animals.


Hydrolysis Plant Physiology Acid Composition Amino Acid Composition Plant Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Vereinfacht ausgedrückt muß die Ernährungsfunktion des Proteins für Tiere mit einhöhligem Magen als Versorgung des Körpers mit Aminosäuren angesehen werden. Dennoch bedingt die Kompliziertheit von Verdauung, Absorption and Stoffwechsel, daß die Zusammensetzung der Aminosäuren — chemisch nach einer Hydrolyse bestimmt nur eine sehr grobe Richtschnur (üblicherweise mit höheren Grenzwerten) für die Biologische Eiweißwertigkeit sein kann.

Ausführlich werden chemische Reaktionen, die die Biologische Eiweißwertigkeit beeinträchtigen, diskutiert. Chemische Tests zur Bestimmung des Ausmaßes dieser Reaktionen werden in Zahl und Wirksamkeit laufend vermehrt. Dennoch müssen, um aus diesen chemischen Tests praktischen Nutzen zu ziehen, ständig ernährungsphysiologische Bestimmungen mit Versuchstieren parallelgeschaltet werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, T.J., Asquith, R.S., Chan, D.K. & Otterburn, M.S. (1975). The covalent reactions of primary amino side-chains and disulphide bonds in wool keratin.J. Soc. Dyers & Colourists 91:133.Google Scholar
  2. Adrian, J. (1972) La réaction de Maillard vue sous l'angle nutritionnel: II. Comportement des matières alimentaires.Industr. alim. agr. 89:1713.Google Scholar
  3. Allison, R.M., Laird, W.M. & Synge, R.L.M. (1973). Notes on a deamination method proposed for determining ‘chemically available lysine’ of proteins.Brit. J. Nutr. 29:51.Google Scholar
  4. Altschul, A.M., Lyman, C.M. & Thurber, F.H. (1958). Cottonseed meal. In ‘Processed plant protein foodstuffs’ (ed. A.M. Altschul), p. 469. New York: Academic Press.Google Scholar
  5. Amato, S.V. (1973). Methodology for determining the availability of amino acids.Proc. AFMA (Amer. Feed Mfr. Ass.) Nutr. Counc. 33, Semi-Annu. Meeting:14.Google Scholar
  6. ARC/MRC Committee Report (1974). Food and nutrition research. London: Her Majesty's Stationery Office.Google Scholar
  7. Asquith, R.S., Booth, A.K. & Skinner, J.D. (1969). The formation of basic amino acids on treatment of proteins with alkali.Biochem. biophys. Acta 181:164.Google Scholar
  8. Asquith, R.S. & Carthew, P. (1972a). An investigation of the mechanism of alkaline degradation of cystine in intact protein.Biochim. biophys. Acta 278:8.Google Scholar
  9. Asquith, R.S. & Carthew, P. (1972b). The preparation and subsequent identification of a dehydroalanyl peptide from alkali-treated oxidised glutathione.Biochim. biophys. Acta 278:346.Google Scholar
  10. Asquith, R.S. Carthew, P., Hanna, H.D. & Otterburn, M.S. (1974). The covalent reactions of primary amino side-chains and disulphide bonds in wool keratin. I. Reactions in wool finishing.J. Soc. Dyers and Colourists 90:357.Google Scholar
  11. Asquith, R.S. & García-Domínguez, J.J. (1968a). New amino acids in alkali-treated wool.J. Soc. Dyers and Colourists 84:155.Google Scholar
  12. Asquith, R.S. & García-Domínguez, J.J. (1968b). Crosslinking reactions occuring in keratin under alkaline conditions.J. Soc. Dyers and Colourists 84:211.Google Scholar
  13. Asquith, R.S., Hanna, H.D. & Otterburn, M.S. (1975). Cystine, amine reactions and their influences on the dyeing and cold setting of wool.J. Soc. Dyers and Colourists 91:143.Google Scholar
  14. Asquith, R.S., Otterburn, M.S. & Sinclair, W.J. (1974). Isopeptide crosslinks — their occurrence and importance in protein structure.Angew. Chem. — Internat. Edn. 13:514.Google Scholar
  15. Auerswald, W. (1974). Berücksichtigung physiologischer Erfordernisse bei der Erschliessung neuer Eiweiss-Quellen.Dtsch. Lebensm.-Rundschau 70:389.Google Scholar
  16. Bate-Smith, E.C. (1975). Phytochemistry of proanthocyanidins.Phytochemistry 14:1107.Google Scholar
  17. Bauernfeind, J.C. & Pinkert, D.M. (1970). Food processing with added ascorbic acid.Advan. Food Res. 18:219.Google Scholar
  18. Baumann, G. & Gierschner, K. (1974). Die Bedeutung aminogruppen-haltiger Verbindungen, insbesondere der freien Aminosäuren, für pflanzliche Lebensmittel, vor allem für Fruchterzeugnisse.Dtsch. Lebensm.-Rundschau 70:273.Google Scholar
  19. Belitz, H.-D. (1967). Eine Synthese von β-Methyllanthionin.Tetrahedron Letters, p. 749.Google Scholar
  20. Benesch, R. et al. (Eds.) (1959). Sulfur in proteins. New York: Academic Press.Google Scholar
  21. Bentley, H.R., McDermott, E.E., Moran, T., Pace, J. & Whitehead, J.K. (1959). Action of nitrogen trichloride on certain proteins. I. Isolation and identification of the toxic factor.Proc. roy. Soc. B. 137:402.Google Scholar
  22. Bills, D.D., Reddy, M.C. & Lindsay, R.C. (1969). Fumigated nuts can cause off-flavor in candy.Mfg. Confectioner, September,p. 39.Google Scholar
  23. Boulter, D. (1976). Screening for protein quality in legumes.Qualitas Plantarum this volume:Google Scholar
  24. Boundy, J.A., Turner, J.E., Wall, J.S. & Dimler, R.J. (1967). Influence of commercial processing on composition and properties of corn zein.Cereal Chem. 44:281.Google Scholar
  25. Brieskorn, C.H. (1972). Einfluss von Be- und Verarbeitung auf die Eiweissstoffe der Lebensmittel.Ernährungs-Umschau 19:198.Google Scholar
  26. Campbell, P.N., Work, T.S. & Mellanby, E. (1951). The isolation of a toxic substance from agenized wheat flour.Biochem. J. 48:106.Google Scholar
  27. Cantoni, C., Bianchi, M.A. & Beretta, G. (1974). Nitriti negli alimenti e nitrosazione dei gruppi fenolici.Ind. Aliment. (Pinerolo, Italy), 15 (part 11):118.Google Scholar
  28. Carpenter, K.J. & Booth, V.H. (1973). Damage to lysine in food processing: its measurement and its significance.Nutr. Abs. Rev. 43:423.Google Scholar
  29. Carpenter, K.J. & Mbadiwe, E.I. (1975). Unpublished work.Google Scholar
  30. Casey, J.C., Self, R. & Swain, T. (1963). Origin of methanol and dimethyl sulphide from cooked foods.Nature (Lond.), 200:885.Google Scholar
  31. Childs, E.A. (1975). An enzymatic-chemical method for extraction of cottonseed protein.J. Food Sci. 40:78.Google Scholar
  32. Clark, B.R. Ashe, H., Halpern, R.M. & Smith, R.A. (1974). A method for determination of methionine containing radioactivity in the thiomethyl moiety.Anal. Biochem. 61:243.Google Scholar
  33. Committee on Food Protection, Food and Nutrition Board, National Research Council (Ed.) (1973). Toxicants occurring naturally in foods (2nd Edn.) Washington, D.C.: National Academy of Sciences.Google Scholar
  34. Davies, A.M.C., Griffiths, N.M., Hobson-Frohock, A. & Land, D.G. (1975). Personal communication.Google Scholar
  35. Davies, R., Laird, W.M. & Synge, R.L.M. (1975). Hydrogenation as an approach to study of reactions of oxidizing polyphenols with plant proteins.Phytochemistry, 14:1591.Google Scholar
  36. De Groot, A.P. & Slump, P. (1969). Effects of severe alkali treatment of proteins on amino acid composition and nutritive value.J. Nutr. 98:45.Google Scholar
  37. Duckworth, J., Hepburn, W.R. & Woodham, A.A. (1961). Leaf protein concentrates II. The value of a commercially dried product for newly-weaned pigs.J. Sci. Fd. Agric. 12:16.Google Scholar
  38. Ellinger, G.M. & Smith, R.H. (1971). The determination of methionine by gas-liquid chromatography.Biochem. J. 124:15P.Google Scholar
  39. Fan, T.Y. & Sosulski, F.W. (1974). Dispersibility and isolation of proteins from legume flours.Can. Inst. Food Sci. Technol. J. 7:256.Google Scholar
  40. Feeney, R.E., Blankenhorn, G. & Dixon, H.B.F. (1975). Carbonyl-amine reactions in protein chemistry.Advan. Protein Chem. 29:135.Google Scholar
  41. Ferretti, A., (1973). Inhibition of cooked flavor in heated milk by use of additives.J. Ag. Food. Chem. 21:939.Google Scholar
  42. Finot, P.A. & Mauron, J. (1969). Le blocage de la lysine par la réaction de Maillard. I. Synthèse deN-(désoxy-1-D-fructosyl-1)- etN-(désoxy-1-D-lactulosyl-1)-L-Pysines.Helv. chim. Acta 52:1488.Google Scholar
  43. Finot, P.A. & Mauron, J. (1972). Le blocage de la lysine par la réaction de Maillard. II. Propriétés chimiques des dérivésN-(désoxy-1-D-fructosyl-1)-etN-(désoxy-1-D-lactulosyl-1)- de la lysine.Helv. chim. Acta 55:1153.Google Scholar
  44. Ford, J.E. & Shorrock, C. (1971). Metabolism of heat-damaged proteins in the rat: influence of heat damage on the excretion of amino acids and peptides in the urine.Brit. J. Nutr. 26:311.Google Scholar
  45. Forsum, E. (1975). Use of a whey protein concentrate as a supplement to maize, rice and potatoes: a chemical and biological evaluation using growing rats.J. Nutr. 105:147.Google Scholar
  46. Freitag, W. & Ney, K.H. (1968). Vorkommen und Entstehen von Dimethylsulphid im Spargelaroma.Z. Lebensm. — Untersuch. Forsch. 137:293.Google Scholar
  47. Friedman, L. & Shibko, S.I. (1969). Adventitious toxic factors in processed foods. In: ‘Toxic constituents of plant foodstuffs’ (ed. I.E. Liener) p. 349. New York: Academic Press.Google Scholar
  48. Friedman, M. (1973). The chemistry and biochemistry of the sulfhydryl group in amino acids, peptides and proteins. Oxford: Pergamon Press.Google Scholar
  49. Gainsville Symposium (1973). Effect of processing on the nutritional value of feeds — Proceedings of a Symposium — Gainsville, Florida January 11–13, 1972. Washington D.C.: National Academy of Sciences.Google Scholar
  50. Girault, A., Baudet, J. & Mossé, J. (1970). Etude des protéines de la graine de tournesol en vue de l'amélioration de leur teneur en lysine. In: ‘Improving plant protein by nuclear techniques. Proceedings of a Symposium held in Vienna 8–12 June, 1970’, p. 275. Wien: International Atomic Energy Agency.Google Scholar
  51. Greenstein, J.P., Birnbaum, S.M., Winitz, M. & Otey, M.C. (1957). Quantitative nutritional studies with water-soluble, chemically defined diets. I. Growth, reproduction and lactation in rats.Arch. Biochem. Biophys. 72:396.Google Scholar
  52. Hall, R.J., Trinder, N. & Wood, M.R. (1975). The determination of available lysine in carbohydrate-rich materials.Analyst, 100:68.Google Scholar
  53. Hanczakowski, P., Rys, R. & Maciejewicz, J. (1975). Wartośé biologiczna bialka bobiku ekstrahowanego w środowiskach oróznych pH.Przem. Spoźywczy, 28:111.Google Scholar
  54. Haslam, E. (1974). Polyphenol-protein interactions.Biochem. J. 139:285.Google Scholar
  55. Hedenskog, G. & Ebbinghaus, L. (1972). Reduction of the nucleic acid content of single-cell protein concentrates,Biotechnol. Bioeng. 14:447.Google Scholar
  56. Hedenskog, G. & Mogren, H. (1973). Some methods for processing of single-cell protein.Biotechnol. Bioeng. 15:129.Google Scholar
  57. Hedenskog, G., Mogren, H. & Enebo, L. (1970). A method for obtaining protein concentrates from micro-organisms,Biotechnol. Bioeng. 12:947.Google Scholar
  58. Heidemann, E., Keller, Ch. & Waykole, P. (1975). Die Veränderungen des Kollagens bei Einwirkung von Oxidationsmitteln.Proceedings of 5th International Wool Textile Research Conference, Aachen, Sept. 2–11, 1975 (in press).Google Scholar
  59. Hurrell, R.F. & Carpenter, K.J. (1974). Mechanisms of heat damage in proteins. 4. The reactive lysine content of heat-damaged material as measured in different ways.Brit. J. Nutr. 32:589.Google Scholar
  60. Irreverre, F., Mudd, S.H., Heizer, W.D. & Laster, L. (1967). Sulfite oxidase deficiency: studies of a patient with mental retardation, dislocated ocular lenses, and abnormal urinary excretion ofS-sulfo-L-cysteine, sulfite and thiosulfate.Biochem. Med. 1:187.Google Scholar
  61. Jocelyn, P.C. (1972). Biochemistry of the SH group. London: Academic Press.Google Scholar
  62. Josefsson, E. (1974). Inverkan ar värmebehandling pa halter av glukosinolater och tillgängligt lysin i rapsmjöl.Sver. Utsaedesfören. Tidskr. 84:199.Google Scholar
  63. Knowles, M.E., McWeeny, D.J., Couchman, L. & Thorogood, M. (1974). Interaction of nitrite with proteins at gastric pH.Nature (Lond.) 247:288.Google Scholar
  64. Kofrányi, E. (1970). Die Überprüfung traditioneller Hypothesen über die Eiweisswertigkeit.Ernährungs-Umschau, 17:402.Google Scholar
  65. Kofrányi, E., Jekat, F. & Müller-Wecker, H. (1970). The minimum protein requirement of humans, tested with mixtures of whole egg plus potato and maize plus beans.Hoppe-Seyl. Z. Physiol. Chem. 351:1485.Google Scholar
  66. Kretovich, V.L. (Ed.) (1975). Rastitel'nye belki i ikh biosintez. Moscow: ‘Nauka’.Google Scholar
  67. Küster, W. & Irion, W. (1929). Über die Hydrolyse von Wolle durch Natriumsulfid. II. Mitteilung.Hoppe-Seyl. Z. Physiol. Chem. 184:225.Google Scholar
  68. Kuiken, K.A. (1958). Effect of other processing factors on vegetable protein meals. In: ‘Processed plant protein foodstuffs’ (ed. A.M. Altschul), p. 131. New York: Academic Press.Google Scholar
  69. Kurata, T. & Fujimaki, M. (1974). Monodehydro-2, 2′-iminodi-2(2′)-deoxy-L-ascorbic acid, a radical product from the reaction of dehydro-L-ascorbic acid with an α-amino acid.Agr. biol. Chem. 38:1981.Google Scholar
  70. Kurosky, A. & Hofmann, T. (1972). Kinetics of the reaction of nitrous acid with model compounds and proteins, and the conformational state of N-terminal groups in the chymotrypsin family.Can. J. Biochem. 50:1282.Google Scholar
  71. Lent, R. & Franzblau, C. (1967). Studies on the reduction of bovine elastin: evidence for the presence of Δ 6,7-dehydrolysinonorleucine.Biochem. biophys. Res. Commun. 26:43.Google Scholar
  72. Liener, I.E. (Ed.) (1969). Toxic constituents of plant foodstuffs. New York: Academic Press.Google Scholar
  73. McCollum, E.V. (1957). A history of nutrition. Boston, Mass.: Houghton, Mifflin.Google Scholar
  74. Matthews, D.M. (1972). Intestinal absorption of amino acids and peptides.Proc. Nutr. Soc. 31:171.Google Scholar
  75. Mauron, J. (1966). Die Pflanzenproteine — eine vernachlässigte Grösse in der menschlichen Ernährung.Int. Z. Vitaminforschung 36:362.Google Scholar
  76. Mauron, J. (1970). Le comportement chimique des protéines lors de la préparation des aliments et ses incidences biologiques.J. internat. Vitaminol. 40:209.Google Scholar
  77. Mauron, J. (1975). Ernährungsphysiologische Beurteilung verarbeiteter Eiweisstoffe.Dtsch. Lebensm.—Rundschau, 71:27.Google Scholar
  78. Mbadiwe, E.I. (1975). Biochemical and nutritional aspects of nitrogenous constituents of seeds ofPentaclethra macrophylla. Ph.D. Thesis, University of East Anglia, Norwich, England.Google Scholar
  79. Milić, B.L. (1972). Lucerne tannins. I. Content and composition during growth.J. Sci. Fd Agric. 23:1151.Google Scholar
  80. Milić, B.L. & Stojanović, S. (1972). Lucerne tannins. III. Metabolic fate of lucerne tannins in mice.J. Sci. Fd Agric. 23:1163.Google Scholar
  81. Milić, B.L., Stojanović, S. & Vučurević, N. (1972). Lucerne tannins. II. Isolation of tannins from lucerne, their nature and influence on the digestive enzymesin vitro.J. Sci. Fd Agric. 23:1157.Google Scholar
  82. Mirna, A. & Coretti, K. (1974). Ueber den Verbleib von Nitrit in Fleischwaren. II. Untersuchungen über chemische und bakteriostatische Eigenschaften verschiedener Reaktionsprodukte des Nitrits.Fleischwirtschaft, 54:507.Google Scholar
  83. Mirna, A. & Hofmann, K. (1969). Ueber den Verbleib von Nitrit in Fleischwaren. I. Umsetzung von Nitrit mit Sulfhydryl-Verbindungen.Fleischwirtschaft, 49:1361.Google Scholar
  84. Misani, F. & Reiner, L. (1950). Studies on nitrogen trichloride-treated prolamines. VIII. Synthesis of the toxic factor.Arch. Biochem. 27:234.Google Scholar
  85. Molina, M.R. & Lachance, P.A. (1973). Studies on the utilization of coconut meal: a new enzymic-chemical method for fiber-free protein extraction of defatted coconut flour.J. Food Sci. 38:607.Google Scholar
  86. Moran, T., Pace, J. & McDermott, E.E. (1953). Interaction of chlorine dioxide with flour: certain chemical aspects.Nature (Lond.) 171:103.Google Scholar
  87. Mort, A. & Lamport, D.T.A. (1975). Evidence for polysaccharide attachment to extensin in cell walls obtained from tomato cell suspension cultures. Paper no. 80, Supplement toPlant Physiol. Vol. 56, No. 2, p.16.Google Scholar
  88. Mudd, S.H. Irreverre, F. & Laster, L. (1967). Sulfite oxidase deficiency in man: demonstration of the enzymatic defect.Science, 156:1599.Google Scholar
  89. Nutrition Society Symposium (1973). The effect of processing on the nutritive value of food.Proc. Nutr. Soc. 32:1.Google Scholar
  90. Olney, J.W., Misra, C.H. & de Goubareff, T. (1975). Cysteine-S-sulfate: brain-damaging metabolite in sulfite oxidase deficiency.J. Neuropathol. exp. Neurol. 34:167.Google Scholar
  91. Otterburn, M.S. (1975). Crosslinking by lysinoalanine in set and alkali-treated wool.Textile Res. J. 45:88.Google Scholar
  92. Patel, K.M. & Johnson, J.A. (1974). Horsebean as protein supplement in breadmaking. I. Isolation of horsebean protein and its amino acid composition.Cereal Chem. 51:693.Google Scholar
  93. Paton, D. (1974). The effects of chemical modification on the pasting characteristics of a high-protein oat flour (Hiroat).Cereal Chem. 51:641.Google Scholar
  94. Plaut, G.W.E. & Betheil, J.J. (1956). Water-soluble vitamins, Part III.Ann. Rev. Biochem. 25:463.Google Scholar
  95. Pokrovskii, A.A., Pyatnitskaya, I.N., Somin, V.I., Gorshkova, L.M., Kovalenko, N.P. & Ikhno, N.P. (1974). Izuchenie biologicheskoi effektivnosti belkovykh izolyatov podsolnechnika.Maslo-Zhir. Prom. No. 5: p.9.Google Scholar
  96. Porter, J.W.G. & Rolls, B.A. (1971). Some aspects of the digestion of proteins.Proc. Nutr. Soc. 30:17.Google Scholar
  97. Reynolds, T.M. (1963). Chemistry of non-enzymic browning. I. The reaction between aldoses and amines.Advan. Food Res. 12:1.Google Scholar
  98. Reynolds, T.M. (1965). Chemistry of non-enzymic browning. II.Advan. Food Res. 14:167.Google Scholar
  99. Robson, A. & Zaidi, Z.H. (1967). The formation of lysinoalanine during the treatment of silk fibroin with alkali.J. Text. Inst., Trans. 58:267.Google Scholar
  100. Rucci, A.O. & Bertoni, M.H. (1973). Proteinas de subproductos de semilla de girasol. I. Obtencion de aislados proteicos y su evaluacion biologica.Anales Asoc. Quim. Argentina, 61:165.Google Scholar
  101. Rydon, H.N. & Smith, P.W.G. (1952). A new method for the detection of peptides and similar compounds on paper chromotograms.Nature (Lond.), 169:922.Google Scholar
  102. Sabir, M.A., Sosulski, F.W. & Finlayson, A.J. (1974). Chrorogenic acid-protein interactions in sunflower.J. agr. Food Chem. 22:575.Google Scholar
  103. Sabir, M.A., Sosulski, F.W. & Kernan, J.A. (1974). Phenolic constituents in sunflower flour.J. agr. Food Chem. 22:572.Google Scholar
  104. Sabir, M.A., Sosulski, F.W. & MacKenzie, S.L. (1973). Gel chromatography of sunflower proteins.J. agr. Food Chem. 21:988.Google Scholar
  105. Saito, M., Wada, E. & Tsumita, T. (1973). Chemical conversion of lysine residue of chromatin proteins and other proteins to α-aminoadipic acid residue in presence of chlorine.Japan. J. exp. Med. 43:523.Google Scholar
  106. Salcedo, L.L., Faris, B. & Franzblau, C. (1969). Studies on the reduction of elastin: biosynthesis and stability of the aldol condensation product of α-aminoadipic acid-δ-semialdehyde.Biochim. biophys. Acta 188:324.Google Scholar
  107. Schmitz, I., Baumann, H. & Zahn, H. (1975). Ein Beitrag zur enzymatischen Totalhydrolyse von Wollkeratin.Proceedings of 5th International Wool Textile Research Conference, Aachen, September 2–11 (in press).Google Scholar
  108. Schöberl, A. & Gräfje, H. (1961). Notiz über eine einfache Synthese des β-Methyllanthionins.Chem. Ber. 94:2583.Google Scholar
  109. Schwenke, K.D. & Raab, B. (1973). Ueber Samenproteine. 1. Mitt. Fraktionverteilung der Proteine aus Sonnenblumensamen.Nahrung 17:373.Google Scholar
  110. Selvendran, R.R., Davies, A.M.C. & Tidder, E. (1975). Cell-wall glycoproteins and polysaccharides of mature runner beans.Phytochemistry. 14:2169.Google Scholar
  111. Sepp, R. (1974). Vegetabiliska proteiner — adekvat oumbärlig basföda.Kem. Tidskr. 86 (no. 12);64.Google Scholar
  112. Shemer, M. & Perkins, E.G. (1975). Degradation of methionine in heated soybean protein and the formation of β-methylmercaptopropionaldehyde.J. Agr. Food Chem. 23:201.Google Scholar
  113. Singleton, V.L. & Kratzer, F.H. (1973). Plant phenolics. In ‘Toxicants occurring naturally in foods’ (ed. Committee on Food Protection, Food and Nutrition Board, National Research Council), 2nd Edn, p. 309. Washington D.C.: National Academy of Sciences.Google Scholar
  114. Sosulski, F.W., McCleary, C.W. & Soliman, F.S. (1972). Diffusion extraction of chlorogenic acid from sunflower kernels.J. Food Sci. 37:253.Google Scholar
  115. Sosulski, F.W., Sabir, M.A. & Fleming, S.E. (1973). Continuous diffusion of chlorogenic acid from sunflower kernels.J. Food Sci. 38:468.Google Scholar
  116. Stein, M. (1976). Natural toxicants in selected leguminous seeds with special reference to their metabolism and behaviour on cooking and processing.Qualitas Plantarum, this volume.Google Scholar
  117. Sulser, H. (1973). Die Bedeutung des Fructoselysins und seiner Abbauprodukte Furosin und Pyridosin für die Qualitätsbeurteilung von Lebensmitteln.Lebensm.-Wiss. Technol. 6:66.Google Scholar
  118. Sulser, H. & Büchi, W. (1969). Abbauprodukte von Fructoselysin in pflanzlichen Trockenlebensmitteln und in einem Modellgemisch nach thermischer Handlung.Lebensm.-Wiss. Technol. 2:105.Google Scholar
  119. Susić, M., Hofmann, K., Manojlović, D. & Nikolić, G. (1974). Einfluss von Nitrat, Nitrit und Ascorbinsäure auf den Gehalt an Sulfhydrylgruppen in Pökelfleischkonserven.Fleischwirtschaft 54:1081.Google Scholar
  120. Synge, R.L.M. (1975a). Interactions of polyphenols with proteins in plants and plant products.Qualitas Plantarum 24:337.Google Scholar
  121. Synge, R.L.M. (1975b). Wechselwirkungen von Polyphenolen und Proteinen in Pflanzen und pflanzlichen Produkten.Naturw. Rundschau, 28:204.Google Scholar
  122. Thewlis, B.H. & Wade, P. (1974). An investigation into the fate of sulphites added to hard sweet biscuit doughs.J. Sci. Fd Agric. 25:99.Google Scholar
  123. Thompson, R.H. (1966). A review of the properties and usage of methyl bromide as a fumigant.J. Stored Prod. Res. 1:353.Google Scholar
  124. Van Beek, L., Feron, V.J. & De Groot, A.P. (1974). Nutritional effects of alkali-treated soyprotein in rats.J. Nutr. 104:1630.Google Scholar
  125. Van Sumere, C.F., Albrecht, J., Dedonder, A., De Pooter, H. & Pé, I. (1975). Plant proteins and phenolics. In ‘The chemistry and biochemistry of plant proteins’ (ed. J.B. Harborne and C.F. Van Sumere), p. 211. London: Academic Press.Google Scholar
  126. Vedernikova, E.I., Linetskaya, G.N., Pavlyuk, R.Yu., Dranik, L.I. & Gorshkova, L.M. (1974). Fenol'nye soedineniya belkovykh izolyatov podsolnechnika.Priklad. Biokhim. Mikrobiol. 10:897.Google Scholar
  127. Waibel, P.E. & Carpenter, K.J. (1972). Mechanisms of heat damage in proteins: 3. Studies with ε-(γ-L-glutamyl)-L-lysine.Brit. J. Nutr. 27:509.Google Scholar
  128. Weber, K. (1974). Verfahren und Vorrichtung zur Gewinnung von Ölsaatenschroten mit differenziertem Anteil an wasserlöslichen Proteinen.Fette, Seifen, Anstrichm. 76:495.Google Scholar
  129. Wildenradt, H.L. & Singleton, V.L. (1974). The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging.Amer. J. Enol. Viticult. 25:119.Google Scholar
  130. Ziegler, Kl., Melchert, I. & Lürken, C. (1967).N ·-(2-Amino-2-carboxyethyl)-ornithine, a new amino acid from alkali-treated proteins.Nature (Lond.) 214:404.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1976

Authors and Affiliations

  • R. L. M. Synge
    • 1
  1. 1.Agricultural Research Council's Food Research InstituteNorwichEngland

Personalised recommendations