Skip to main content
Log in

On ACC

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We show that every languageL in the class ACC can be recognized by depth-two deterministic circuits with a symmetric-function gate at the root and\(2^{\log ^{O(1)} n} \) AND gates of fan-in logO(1) n at the leaves, or equivalently, there exist polynomialsp n (x 1 ,..., x n ) overZ of degree logO(1) n and with coefficients of magnitude\(2^{\log ^{O(1)} n} \) and functionsh n :Z→{0,1} such that for eachn and eachx∈{0,1}n,XL (x) =h n (p n (x 1 ,...,x n )). This improves an earlier result of Yao (1985). We also analyze and improve modulus-amplifying polynomials constructed by Toda (1991) and Yao (1985).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Ajtai, 364-1 formulae on finite structures.Annals of Pure and Applied Logic 24 (1983), 1–48.

    Google Scholar 

  • E. Allender, A note on the power of threshold circuits. InProc. 30th Ann. IEEE Symp. Found. Comput. Sci., 1989, 580–584.

  • E. Allender and U. Hertrampf, Depth reduction for circuits of unbounded fanin.Inform. and Comput. 108 (1994). To appear.

  • N. Atiyah and I. MacDonald,Introduction to Commutative Algebra. Addison-Wesley, 1969.

  • D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages inNC 1.J. Comput. System Sci. 38(1), (1989), 150–164.

    Google Scholar 

  • D. A. M. Barrington, Quasipolynomial size circuit classes. InProc. 7th Ann. IEEE Conf. Structure in Complexity Theory, 1992, 86–93.

  • D. A. M. Barrington andD. Thérien, Finite monoids and the fine structure ofNC 1.J. Assoc. Comput. Mach. 35(4) (1988), 941–952.

    Google Scholar 

  • R. Beigel, The polynomial method in circuit complexity. InProc. 8th Ann. IEEE Conf. Structure in Complexity Theory, 1993, 82–95.

  • R. Beigel andJ. Gill, Counting classes: Thresholds, parity, mods, and fewness.Theoret. Comput. Sci. 103(1) (1992), 3–23.

    Google Scholar 

  • R. Beigel and J. Tarui, On ACC. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 783–792.

  • R. Beigel, N. Reingold, and D. Spielman, The perception strikes back. InProc. 6th Ann. IEEE Conf. Structure in Complexity Theory, 1991, 286–291.

  • R. Beigel, N. Reingold, and D. Spielman, PP is closed under intersection.J. Comput. System Sci. 48 (1994). To appear.

  • R. Boppana andM. Sipser, The complexity of finite functions. InHandbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, ed.J. van Leeuwen, MIT Press and Elsevier, The Netherlands, 1990, 757–804.

    Google Scholar 

  • A. K. Chandra, L. Stockmeyer, andU. Vishkin, Constant depth reducibility.SIAM J. Comput. 13(2) (1984), 423–438.

    Google Scholar 

  • F. Green, J. Köbler, and J. Torán, The power of the middle bit. InProc. 7th Ann. IEEE Conf. Structure in Complexity Theory, 1992, 111–117. An extended version has been drafted by Green, Köbler, Regan, Schwentick, and Torán.

  • M. Furst, J. B. Saxe, andM. Sipser, Parity, circuits, and the polynomial-time hierarchy.Math. Systems Theory 17(1) (1984), 13–27.

    Google Scholar 

  • J. T. Håstad,Computational Limitations for Small-Depth Circuits. ACM Doctoral Dissertation Award. MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  • D. Johnson, A catalog of complexity classes. InHandbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, ed.J. van Leeuwen, MIT Press and Elsevier, 1990, 69–161.

  • R. Kannan, H. Venkateswaran, V. Vinay, and A. C. Yao, A circuit-based proof of Toda's theorem.Inform. and Comput. (1993). To appear.

  • P. McKenzie and D. Thérien, Automata theory meets circuit complexity. InProc. of the 16th ICALP, Lecture Notes in Computer Science 372, Springer-Verlag, 1989, 589–602.

  • A. A. Razborov, Lower bounds for the size of circuits of bounded depth with basis {Λ, ⊕}.Math. notes of the Academy of Science of the USSR 41 (4) (1987), 333–338.

    Google Scholar 

  • M. Sipser, The history and status of the P versus NP question. InProc. Twenty-fourth Ann. ACM Symp. Theor. Comput., 1992, 603–618.

  • R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity. InProc. Nineteenth Ann. ACM Symp. Theor. Comput., 1987, 77–82.

  • J. Tarui, Probabilistic polynomials, AC0 functions, and the polynomial-time hierarchy.Theoret. Comput. Sci. 113 (1993), 167–183.

    Google Scholar 

  • S. Toda, PP is as hard as the polynomial-time hierarchySIAM J. Comput. 20(5) (1991), 865–877.

    Google Scholar 

  • S. Toda andM. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy.SIAM J. Comput. 21(2) (1992), 316–328.

    Google Scholar 

  • A. C. Yao, Separating the polynomial-time hierarchy by oracles. InProc. 26th Ann. IEEE Symp. Found. Comput. Sci., 1985, 1–10.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beigel, R., Tarui, J. On ACC. Comput Complexity 4, 350–366 (1994). https://doi.org/10.1007/BF01263423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263423

Subject classifications

Navigation