Skip to main content
Log in

Kronecker webs, bihamiltonian structures, and the method of argument translation

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We show that manifolds which parameterize values of first integrals of integrable finite-dimensional bihamiltonian systems carry a geometric structure which we call aKronecker web. We describe two opposite direction functors between Kronecker webs and integrable bihamiltonian structures: one is left inverse to the other. Conjecturally, these two functors are mutually inverse (for “small” open subsets of the manifolds in question).

The conjecture above is proven here when the bihamiltonian structure allows an anti-involution of a particular form. This implies the conjecture of [15] that on a dense open subset the bihamiltonian structure on\(\mathfrak{g}^* \) is flat if\(\mathfrak{g}\) is semisimple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Adams,Lectures on Lie Groups, W. A. Benjamin, Inc., New York, Amsterdam, 1969. Russian transl.: Пж. Адамс,Пехиии по группам Ли, Наука, М., 1979.

    Google Scholar 

  2. Л. В. Антонян, О классификайии однородных элеменмов ℤ2 полупросмых алгедр Ли, Вест. МГУ, сер. мат.37 (1982), No. 2, 29–34. English transl.: L. V. Antonyan, On classification of homogeneous elements of ℤ2-graded semisimple Lie algebras, Mosc. Univ. Math. Bull.37 (1982), No. 2, 36–43.

    Google Scholar 

  3. В. И. Арнольд,Мамемамичесские мемоды классической механики, Наука, М., 1974. English transl.: V. I. Arnold,Mathematical Methods of Classical Mechanics, Graduate Texts in Math.60, Springer-Verlag, New York, Heidelberg, Berlin, 1978.

    Google Scholar 

  4. В. И. Арнольд, А. Б. Гивенталь,Симплекмическая деомемрия, Совр. пробл. математики. фунд. направл., т. 4, Пинамические сисмемы-4, ВИНИТИ, М., 1985, 5–139. English transl. V. I. Arnold, A. B. Givental,Symplectic geometry, in:Dynamical Systems IV.Symplectic Geometry and its Applications, Encycl. Math. Sci., Springer-Verlag, Berlin, Heidelberg, New York, 1989.

    Google Scholar 

  5. А. Б. Болсинов,Содлас ованные скобки Пуассона на алгебрах Ли и полнома семей смеа функюий е инволююии, Изв. АН СССР, сер. мат.55 (1991), No. 1, 68–92. English transl.: A. V. Bolsinov,Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Math. USSR, Izv.38 (1992), No. 1, 69–90.

    Google Scholar 

  6. N. Bourbaki,Groupes et Algèbres de Lie, Ch. VII, VIII, Hermann, Paris, 1975. Russian transl.: Н. Бнрбакм,Группы и алгебры Ли. Главы VII, VIII, Мир, М., 1978.

    Google Scholar 

  7. Л. А. Тахтаджян, Л. Д. Фаддеев,Гамильмонов подход е меории солимонов, Наука, М., 1986. English transl.: L. D. Faddeev, L. A. Takhtajan,Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  8. A. S. Fokas and B. Fuchssteiner,On the structure of symplectic operators and hereditary symmetries, Lett. Nuovo Cimento (2)28 (1980), No. 8, 299–303.

    Google Scholar 

  9. Ф. Р. Гантмахер,Теория мамрию, Физматгиз, М., 1954. English transl.: F. R. Gantmacher,The Theory of Matrices, Vols. 1, 2, Chelsea Publ. Co., New York, 1959.

    Google Scholar 

  10. И. М. Гельфанд, И. Г. Дорфман,Гамильмоновы операморы и свгзанные с ними алгебраические смрукмуры, Функц. анал. и его прил.13 (1979), No. 4, 13–30. English transl.: I. M. Gelfand, I. Ya. Dorfman,Hamiltonian operators and algebraic structures associated with them, Funct. Anal. Appl.13 (1980), 248–262.

    Google Scholar 

  11. И. М. Гельфанд, И. С. Захаревич,Спекмральная меория пучка кососиммемрических дифференюиальных операморов 3-го порядка на S 1, Функц. анал. и его прил.23 (1989), No. 2, 1–11. English transl.: I. M. Gelfand, I. S. Zakharevich,Spectral theory for a pencil of skew-symmetrical differential operators of third order on S 1, Func. Anal. Appl.23 (1989), No. 2, 85–93.

    Google Scholar 

  12. —,Webs, Veronese curves, and bihamiltonian systems, J. of Func. Anal.99 (1991), 150–178.

    Google Scholar 

  13. —,On the local geometry of bihamiltonian structures, in:The Gelfand Mathematical Seminar, 1990–1992, Birkhäuser, Boston, 1993, pp. 51–112.

    Google Scholar 

  14. —,The spectral theory for a pencil of skew symmetrical differential operators of the third order, Comm. Pure Appl. Math.47 (1994), No. 8, 1031–1041.

    Google Scholar 

  15. —,Webs, Lenard schemes, and the local geometry of bihamiltonian Toda and Lax structures, Sel. Math., New ser.6 (2000), No. 2, 131–183.

    Google Scholar 

  16. V. Guillemin, S. Sternberg,Geometric Asymptotics, Mathematical Surveys, No. 14, Amer. Math. Soc., Providence, R.I., 1977. Russian transl.: В. Гийемин, С. Стернберг,Геомемрические асимнмомики, Мир, М., 1981.

    Google Scholar 

  17. Г. Б. Гуревич,Канонизаюия нары бивекморое, Труды сем. по вект. и тенз. анализу8 (1950), 355–363. (G. B. Gurevič,Canonization of a pair of bivectors, Trudy seminara po vectornomu i tenzornomu analizu8 (1950), 355–363. (Russian).)

    Google Scholar 

  18. А. А. Кириллов,Локальные алгебры Ли, УМН31 (1976), No. 4(190), 57–76. English transl.: A. A. Kirillov,Local Lie algebras, Rus. Math. Surveys31 (1976), No. 4, 55–75.

    Google Scholar 

  19. Y. Kosmann-Schwarzbach, F. Magri,Lax-Nijenhuis operators for integrable systems, J. Math. Phys.37 (1996), No. 12, 6173–6197.

    Google Scholar 

  20. B. Kostant,The solution to a generalized Toda lattice and representation theory, Adv. in Math.34 (1979), No. 3, 195–338.

    Google Scholar 

  21. P. D. Lax,Almost periodic solutions of the KdV equation, SIAM Rev.18 (1976), No. 3, 351–375.

    Google Scholar 

  22. F. Magri,A simple model of the integrable Hamiltonian equation, J. Math. Physics19 (1978), No. 5, 1156–1162.

    Google Scholar 

  23. F. Magri,On the geometry of soliton equations, preprint, 1988.

  24. F. Magri,On the geometry of soliton equations. Geometric and algebraic structures in differential equations, Acta Appl. Math.41 (1995), No. 1-3, 247–270.

    Google Scholar 

  25. H. McKean, private communication, 1990.

  26. А. С. Мищенко, А. Т. Фоменко,Уравнение Эйлера на конечномерных группх Ли, Изв. АН CCCP, сер. мат.42 (1978), No. 2, 396–415. English transl.: A. S. Miščenko, A. T. Fomenko,Euler equation on finite-dimensional Lie groups, Math USSR, Izv.12 (1978), 371–389.

    Google Scholar 

  27. C. Morosi, L. Pizzocchero,On the Euler equation: bi-Hamiltonian structure and integrals in involution, Lett. Math. Phys.37 (1996), No. 2, 117–135.

    Google Scholar 

  28. A. Panasyuk,Symplectic realizations of bihamiltonian structures, preprint, 1998.

  29. A. Panasyuk,Veronese webs for bi-Hamiltonian structures of higher corank, in:Poisson Geometry (Warsaw, 1998), Polish Acad. Sci., Warsaw, 2000, pp. 251–261.

    Google Scholar 

  30. M.-H. Rigal,Géométrie globale des systèmes bihamiltoniens réguliers de rang maximum en dimension 5, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), No. 11, 1479–1484.

    Google Scholar 

  31. M.-H. Rigal,Tissus de Véronèse en dimension 3, in:Séminaire Gaston Darboux de Géométrie et Topologie Différentielle, 1994–1995 (Montpellier), Univ. Montpellier II, Montpellier, 1995, pp. iv, 63–68.

  32. M.-H. Rigal,Systèmes bihamiltoniens en dimension impaire, Ann. Sci. École Norm. Sup. (4)31 (1998), No. 3, 345–359.

    Google Scholar 

  33. J. Sekiguchi, Y. Shimizu,Simple singularities and infinitesimally symmetric spaces, Proc. Jap. Acad. Ser. A Math. Sci.57, (1981), No. 1, 42–46.

    Google Scholar 

  34. S. Sternberg,Lectures on Differential Geometry, second ed., Chelsea Publ. Co., New York, 1983.

    Google Scholar 

  35. R. C. Thompson,Pencils of complex and real symmetric and skew matrices, Lin. Alg. Appl.147 (1991), 323–371.

    Google Scholar 

  36. F.-J. Turiel,Classification locale d'un couple de formes symplectiques Poisson-compatibles, C. R. Acad. Sci. Paris Sér. I Math.308 (1989), No. 20, 575–578.

    Google Scholar 

  37. F.-J. Turiel,C -équivalence entre tissus de Veronese et structures bihamiltoniennes, C. R. Acad. Sci. Paris Sér. I Math.328 (1999), No. 10, 891–894.

    Google Scholar 

  38. F.-J. Turiel,Mémoire â l'appui du projet de Note: C -équivalence entre tissus de Veronese et structures bihamiltoniennes, preprint, 1999.

  39. F.-J. Turiel,Mémoire â l'appui du projet de Note: Tissus de Veronese analytiques de codimension supérieure et structures bihamiltoniennes, preprint, 2000.

  40. F.-J. Turiel,Tissus de Veronese analytiques de codimension supérieure et structures bihamiltoniennes, C. R. Acad. Sci. Paris Sér. I Math.331 (2000), No. 1, 61–64.

    Google Scholar 

  41. H. W. Turnbull, A. C. Aitken,An Introduction to the Theory of Canonical Matrices, Dover Publ. Inc., New York, 1961.

    Google Scholar 

  42. A. Weinstein,The local structure of Poisson manifolds, J. Diff. Geom.18 (1983), No. 3, 523–557.

    Google Scholar 

  43. I. Zakharevich,Kronecker webs, bihamiltonian structures, and the method of argument translation, archived as math.SG/9908034.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharevich, I. Kronecker webs, bihamiltonian structures, and the method of argument translation. Transformation Groups 6, 267–300 (2001). https://doi.org/10.1007/BF01263093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263093

Keywords

Navigation