Skip to main content
Log in

Strong unicity in nonlinear approximation and free knot splines

  • Published:
Constructive Approximation Aims and scope

Abstract

We derive a necessary alternation condition for unique local best approximations fromS m, k , the set of splines of degreem withk free knots. This result is related to a conjecture of L. L. Schumaker. Moreover, we give a complete description of functions from the interior of the strong unicity set forS 1 m,k the set of splines of degreem withk free simple knots, and show that this set is dense in the unicity set forS 1 m,k . Finally, we prove a general characterization of suns for strong unicity and show thatS 1 m,k is a set of this type, although, it is not a sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Arndt (1974):On the uniqueness of best spline approximations with free knots. J. Approx. Theory,11:118–125.

    Google Scholar 

  2. R. B. Barrar, H. L. Loeb (1970):On the continuity of the nonlinear Tschebyscheff operator. Pacific J. Math.,32:593–601.

    Google Scholar 

  3. D. Braess (1971):Chebyshev approximation by spline functions with free knots. Numer. Math.,17:357–366.

    Google Scholar 

  4. D. Braess (1986): Nonlinear Approximation Theory. Berlin: Springer-Verlag.

    Google Scholar 

  5. C. de Boor (1978): A Practical Guide to Splines. New York: Springer-Verlag.

    Google Scholar 

  6. F. Deutsch, G. Nürnberger, I. Singer (1980):Weak Chebyshev subspaces and alternation. Pacific J. Math.,89:9–31.

    Google Scholar 

  7. R. Hettich, H. Zencke (1982): Numerische Methoden der Approximation und semi-infiniten Optimierung. Stuttgart: Teubner.

    Google Scholar 

  8. R. S. Johnson (1960):On monosplines of least deviation. Trans. Amer. Math. Soc.,96:458–477.

    Google Scholar 

  9. R. C. Jones, L. A. Karlovitz (1970):Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approx. Theory,3:138–145.

    Google Scholar 

  10. G. Meinardus (1967): Approximation of Functions: Theory and Numerical Methods. Berlin: Springer-Verlag.

    Google Scholar 

  11. B. Mulansky (1992):Chebyshev approximation by spline functions with free knots. IMA J. Numer. Anal.,12:95–105.

    Google Scholar 

  12. G. Nürnberger (1982):A local version of Haar's theorem in approximation theory. Numer. Funct. Anal. Optim.,5:21–46.

    Google Scholar 

  13. G. Nürnberger (1985):Best approximation by spline functions: theory and numerical methods. In: Delay Equations, Approximation and Application (G. Meinardus, G. Nürnberger, eds.). Basel: Birkhäuser, pp. 180–212.

    Google Scholar 

  14. G. Nürnberger (1987):Strongly unique spline approximation with free knots. Constr. Approx.,3:31–42.

    Google Scholar 

  15. G. Nürnberger (1989):On the structure of nonlinear approximating families and splines with free knots. In: Approximation Theory VI (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 507–510.

    Google Scholar 

  16. G. Nürnberger (1989): Approximation by Spline Functions. Berlin: Springer-Verlag.

    Google Scholar 

  17. G. Nürnberger (1992):The metric projection for free knot splines. J. Approx. Theory,71:145–153.

    Google Scholar 

  18. G. Nürnberger, L. L. Schumaker, M. Sommer, H. Strauß (1985):Approximation by generalized splines. J. Math. Anal. Appl.,108:466–494.

    Google Scholar 

  19. J. R. Rice (1986): The Approximation of Functions II. Reading, MA: Addison-Wesley.

    Google Scholar 

  20. R. Schaback (1978):On alternation numbers in nonlinear Chebyshev approximation. J. Approx. Theory,23:379–391.

    Google Scholar 

  21. L. L. Schumaker (1968):Uniform approximation by Chebyshev spline functions, II: free knots. SIAM J. Numer. Anal.,5:647–656.

    Google Scholar 

  22. L. L. Schumaker (1969):Approximation by splines. In: Theory and Application of Spline Functions (T. Greville, ed.). New York: Academic Press, pp. 65–85.

    Google Scholar 

  23. L. L. Schumaker (1981): Spline Functions: Basic Theory, New York: Wiley-Interscience.

    Google Scholar 

  24. D. Wulbert (1971):Uniqueness and differential characterization of approximations from manifolds of functions. Amer. J. Math.,93:350–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Larry L. Schumaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nürnberger, G. Strong unicity in nonlinear approximation and free knot splines. Constr. Approx 10, 285–299 (1994). https://doi.org/10.1007/BF01263068

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263068

AMS classification

Key words and phrases

Navigation