Skip to main content
Log in

Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials

  • Published:
Constructive Approximation Aims and scope

Abstract

Let Δq be the set of functionsf for which theqth difference, is nonnegative on the interval [− 1,1],P n is the set of algebraic polynomials of degree not exceedingn, τ k (f, δ) p is the averaged Sendov-Popov modulus of smoothness in theL p [−1,1] metric for 1≦p≦∞, ω k (f, δ) and\(\omega _\phi ^k (f,\delta ),\phi (x): = \sqrt {1 - x^2 } ,\), are the usual modulus and the Ditzian-Totik modulus of smoothness in the uniform metric, respectively. For a functionfC[−1,1]⋂Δ2 we construct a polynomialp n P n ⋂Δ2 such that

$$\begin{gathered} \left| {f(x) - p_n (x)} \right| \leqslant C\omega _3 (f,n^{ - 1} \sqrt {1 - x^2 } + n^{ - 2} ),x \in [ - 1,1]; \hfill \\ \left\| {f - p_n } \right\|_\infty \leqslant C\omega _\phi ^3 (f,n^{ - 1} ); \hfill \\ \left\| {f - p_n } \right\|_p \leqslant C\tau _3 (f,n^{ - 1} )_p . \hfill \\ \end{gathered}$$

As a consequence, for a functionfC 2[−1,1]⋂Δ3 a polynomialp * n P n ⋂Δ3 exists such that

$$\left\| {f - p_n^* } \right\|_\infty \leqslant Cn^{ - 1} \omega _2 (f\prime ,n^{ - 1} ),$$

wheren≥2 andC is an absolute constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. DeVore, X. M. Yu (1985):Pointwise estimates for monotone polynomial approximation. Constr. Approx.,1:323–331.

    Google Scholar 

  2. Z. Ditzian, V. Totik (1987): Moduli of Smoothness. Berlin: Springer-Verlag.

    Google Scholar 

  3. V. K. Dzjadyk (1977): Introduction to the Theory of Uniform Approximation of Functions by Polynomials. Moscow: Izdat. “Nauka.”

    Google Scholar 

  4. K. A. Kopotun (1992):Uniform estimates of convex approximation of functions by polynomials. Mat. Zametki,51(3):35–46.

    Google Scholar 

  5. N. P. Kornejchuk (1987): Exact Constants in Approximation Theory. Moscow: Izdat. “Nauka.” (English translation: Cambridge: Cambridge University Press, 1991.)

    Google Scholar 

  6. D. Leviatan (1986):Pointwise estimates for convex polynomial approximation. Proc. Amer. Math. Soc.,98(3):471–474.

    Google Scholar 

  7. A. W. Roberts, D. E. Varberg (1973): Convex Functions. New York: Academic Press.

    Google Scholar 

  8. B. Sendov, V. A. Popov (1983) The Averaged Moduli of Smoothness. Sofia: Bulgarian Academic of Science. (English translation: New York: Wiley, 1988.)

    Google Scholar 

  9. I. A. Shevchuk (1989):On coapproximation of monotone functions. Dokl. Akad. Nauk SSSR,308 (3):537–541. (English translation: Soviet Math. Dokl.,40(2):349–354.)

    Google Scholar 

  10. I. A. Shevchuk (1989): Comonotone Approximation and Polynomial Kernels of Dzjadyk. Kiev: Institut Matematiki AN USSR (Preprint).

    Google Scholar 

  11. I. A. Shevchuk (1992): Approximation by Polynomials and Traces of the Functions Continuous on an Interval. Kiev: Naukova dumka.

    Google Scholar 

  12. A. S. Shvedov (1981):Orders of coapproximation of functions by algebraic polynomials. Mat. Zametki,29(1):117–130. (English translation: Math. Notes,30:63–70.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ronald A. DeVore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopotun, K.A. Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials. Constr. Approx 10, 153–178 (1994). https://doi.org/10.1007/BF01263061

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01263061

AMS classification

Key words and phrases

Navigation