Skip to main content
Log in

Morphometric synaptology of gracilo-diencephalic relay cells: An electron microscopic study in the cat using retrograde transport of horseradish peroxidase

  • Published:
Journal of Neurocytology

Summary

Gracilo-diencephalic relay cells were identified with the aid of retrograde transport of horseradish peroxidase. Section embedding permitted light-microscopic identification and selection of relay cells and adjacent unlabelled neurons for ultrastructural study. Electron-microscopic analysis of the boutons which contacted the perikaryal surface of the cells revealed a statistically significant positive relationship between bouton covering ratio and cell body size for both labelled and unlabelled neurons. Estimates of the density of boutons also showed a positive correlation between the size of the cell body and the density of terminals contacting its surface. The functional implications of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angaut, P. &Sotelo, C. (1973) The fine structure of the cerebellar central nuclei in the cat. II. Synaptic organization.Experimental Brain Research 16, 431–54.

    Google Scholar 

  • Berkley, K. J. (1975) Different targets of different neurons in nucleus gracilis of the cat.Journal of Comparative Neurology 163, 285–304.

    Google Scholar 

  • Berkley, K. J., Blomqvist, A., Pelt, A. &Flink, R. (1980) Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: an anatomical study using two different double-labeling techniques.Brain Research 202, 273–90.

    PubMed  Google Scholar 

  • Blackstad, T. W. &Dahl, H. A. (1962) Quantitative evaluation of structures in contact with neuronal somata.Ada Morphologica Nederlando-Scandinavica 4, 329–43.

    Google Scholar 

  • Blinzinger, K. &Kreutzberg, G. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells.Zeitschrift für Zellforschung und mikroskopische Anatomie 85, 145–57.

    Google Scholar 

  • Blomqvist, A. (1980a) Axosomatic boutons on retrogradely labelled gracilo-diencephalic relay cells: a quantitative study in the cat.Neuroscience Letters, Suppl. 5, S250.

  • Blomqvist, A. (1980b) Gracilo-diencephalic relay cells: a quantitative study in the cat using retrograde transport of horseradish peroxidase.Journal of Comparative Neurology 193, 1097–125.

    Google Scholar 

  • Blomqvist, A., Flink, R., Bowsher, D., Griph, S. &Westman, J. (1978) Tectal and thalamic projections of dorsal column and lateral cervical nuclei: a quantitative study in the cat.Brain Research 141, 335–41.

    Google Scholar 

  • Blomqvist, A. &Westman, J. (1970) An electron microscopical study of the gracile nucleus in the cat.Acta societatis medicorum upsaliensis 75, 241–52.

    PubMed  Google Scholar 

  • Blomqvist, A. &Westman, J. (1976) Interneurons and initial axon collaterals in the feline gracile nucleus demonstrated with the rapid Golgi technique.Brain Research 111, 407–10.

    PubMed  Google Scholar 

  • Blum, P., Bromberg, M. B. &Whitehorn, D. (1975) Population analysis of single units in the cuneate nucleus of the cat.Experimental Neurology 48, 57–78.

    PubMed  Google Scholar 

  • Boivie, J. (1971) The termination in the thalamus and the zona incerta of fibres from the dorsal column nuclei (DCN) in the cat. An experimental study with silver impregnation methods.Brain Research 28, 459–90.

    Google Scholar 

  • Bowsher, D. &Westman, J. (1971) Ultrastructural characteristics of the caudal and rostral brain stem reticular formation.Brain Research 28, 443–57.

    PubMed  Google Scholar 

  • Burton, H. &Loewy, A. D. (1977) Projections to the spinal cord from medullary somatosensory relay nuclei.Journal of Comparative Neurology 173, 773–92.

    PubMed  Google Scholar 

  • Cheek, M. D., Rustioni, A. &Trevino, D. L. (1975) Dorsal column nuclei projections to the cerebellar cortex in cats as revealed by the use of the retrograde transport of horseradish peroxidase.Journal of Comparative Neurology 164, 31–46.

    Google Scholar 

  • Conradi, S. (1969) Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat.Acta physiologica scandinavica, Suppl. 332, 5–48.

    Google Scholar 

  • Conradi, S. &Ronnevi, L. -O. (1975) Spontaneous elimination of synapses on cat spinal motoneurons after birth: do half of the synapses on the cell bodies disappear?Brain Research 92, 505–10.

    PubMed  Google Scholar 

  • Cullheim, S. &Kellerth, J. -O. (1978) A morphological study of the axons and recurrent axon collaterals of cat sciatic α-motoneurons after intracellular staining with horseradish peroxidase.Journal of Comparative Neurology 178, 537–58.

    PubMed  Google Scholar 

  • Dostrovsky, J. O., Jabbur, S. &Millar, J. (1978) Neurones in cat gracile nucleus with both local and widefield inputs.Journal of Physiology 278, 365–75.

    PubMed  Google Scholar 

  • Gelfan, S., Field, T. H. &Pappas, G. D. (1974) The receptive surface and axonal terminals in severely denervated neurons within the lumbosacral cord of the dog.Experimental Neurology 43, 162–9.

    PubMed  Google Scholar 

  • Gelfan, S. &Rapisarda, A. F. (1964) Synaptic density on spinal neurons of normal dogs and dogs with experimental hind-limb rigidity.Journal of Comparative Neurology 123, 73–96.

    PubMed  Google Scholar 

  • Graham, R. C., Jr &Karnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.Journal of Histochemistry and Cytochemistry 14, 291–302.

    PubMed  Google Scholar 

  • Grantyn, R., Grantyn, A. &Schaaf, P. (1977) Conduction velocity, input resistance and size of cat ocular motoneurons stained with Procion yellow.Brain Research 135, 167–73.

    Google Scholar 

  • Grimley, P. M. (1965) Selection for electron microscopy of specific areas in large epoxy tissue sections.Stain Technology 40, 259–63.

    PubMed  Google Scholar 

  • Gustafsson, B. (1979) Changes in motoneurone electrical properties following axotomy.Journal of Physiology 293, 197–215.

    PubMed  Google Scholar 

  • Henneman, E. (1980) Organization of the motoneuron pool: the size principle. InMedical Physiology (edited byMountcastle, V. B.), Vol. 1, pp. 718–41. St Louis: Mosby.

    Google Scholar 

  • Henneman, E., SomJen, G. &Carpenter, D. O. (1965a) Functional significance of cell size in spinal motoneurons.Journal of Neurophysiology 28, 560–80.

    PubMed  Google Scholar 

  • Henneman, E., Somjen, G. &Carpenter, D. O. (1965b) Excitability and inhibitibility of motoneurons of different sizes.Journal of Neurophysiology 28, 599–620.

    PubMed  Google Scholar 

  • Holländer, H. (1970) The section embedding (SE) technique. A new method for the combined light microscopic and electron microscopic examination of central nervous tissue.Brain Research 20, 39–47.

    PubMed  Google Scholar 

  • Kaiserman-Abramof, I. R. &Peters, A. (1972) Some aspects of the morphology of Betz cells in the cerebral cortex of the cat.Brain Research 43, 527–46.

    PubMed  Google Scholar 

  • Karlsson, U. (1966) Three-dimensional studies of neurons in the lateral geniculate nucleus of the rat. II. Environment of perikarya and proximal parts of their branches.Journal of Ultrastructure Research 16, 482–504.

    PubMed  Google Scholar 

  • Kernell, D. &Zwaagstra, B. (1980) Relation between input conductance and cell size among hindlimb motoneurons.Neuroscience Letters, Suppl. 5, S85.

    Google Scholar 

  • Kernell, D. &Zwaagstra, B. (1981) Input conductance, axonal conduction velocity and cell size among hindlimb motoneurones of the cat.Brain Research 204, 311–26.

    PubMed  Google Scholar 

  • Kojima, T., Saito, K. &Kakimi, S. (1975)An Electron Microscopic Atlas of Neurons. A Complete Picture of the Neuronal Soma and General Structure of the Neuron. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Kuno, M. &Llinás, R. (1970) Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurons of the cat.Journal of Physiology 210, 807–21.

    PubMed  Google Scholar 

  • Lemkey-Johnston, N. &Larramendi, L. M. H. (1968) Types and distribution of synapses upon basket and stellate cells of the mouse cerebellum: an electron microscopic study.Journal of Comparative Neurology 134, 73–112.

    PubMed  Google Scholar 

  • Limwongse, V. &DeSantis, M. (1980) Coverage by axosomatic boutons varies directly with the diameter of the postsynaptic motor neuron in the trigeminal nucleus of the rat.Brain Research 189, 239–44.

    Google Scholar 

  • Malmgren, L. &Olsson, Y. (1977) A sensitive histochemical method for light- and electron-microscopic demonstration of horseradish peroxidase.Journal of Histochemistry and Cytochemistry 25, 1280–3.

    PubMed  Google Scholar 

  • Malmgren, L. &Olsson, Y. (1978) A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport.Brain Research 148, 279–94.

    PubMed  Google Scholar 

  • Nakamura, Y. (1975) An electron microscope study of the red nucleus'in the cat, with special reference to the quantitative analysis of the axosomatic synapses.Brain Research 94, 1–17.

    PubMed  Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. deF. (1976)The Fine Structure of the Nervous System: the Neurons and Supporting Cells. Philadelphia: Saunders.

    Google Scholar 

  • Rustioni, A. &Ellis, L. C., Jr (1978) Ultrastructural identification of non-primary afferent terminals in the nucleus gracilis of cats.Brain Research 146, 358–65.

    PubMed  Google Scholar 

  • Rustioni, A. &Sotelo, C. (1974) Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents.Journal of Comparative Neurology 155, 441–68.

    Google Scholar 

  • Saito, K. (1979) Morphometrical synaptology of Clarke cells and of distal dendrites in the nucleus dorsalis: an electron microscopic study in the cat.Brain Research 178, 233–49.

    PubMed  Google Scholar 

  • Sotelo, C. &Palay, S. L. (1970) The fine structure of the lateral vestibular nucleus in the rat. II. Synaptic organization.Brain Research 18, 93–115.

    PubMed  Google Scholar 

  • Spencer, R. F. &Sterling, P. (1977) An electron microscope study of motoneurones and interneurones in the cat abducens nucleus identified by retrograde intraaxonal transport of horseradish peroxidase.Journal of Comparative Neurology 176, 65–86.

    Google Scholar 

  • Tan, C. K. &Lieberman, A. R. (1978) Identification of thalamic projection cells in the rat cuneate nucleus: a light and electron microscopic study using horseradish peroxidase.Neuroscience Letters 10, 19–22.

    Google Scholar 

  • Wen, C. Y., Tan, C. K. &Wong, W. C. (1977) Presynaptic dendrites in the cuneate nucleus of the monkey.Neuroscience Letters 5, 129–32.

    Google Scholar 

  • Westman, J. (1971) Quantitative estimation of the proportion of perikaryal surface area covered with boutons — a possibility to distinguish different nerve cell populations.Brain Research 32, 203–7.

    PubMed  Google Scholar 

  • Wicksell, S. D. (1925) The corpuscle problem. A mathematical study of a biometric problem.Biometrica 17, 84–99.

    Google Scholar 

  • Willis, W. D. &Coggeshall, R. E. (1978)Sensory Mechanisms of the Spinal Cord. New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomqvist, A. Morphometric synaptology of gracilo-diencephalic relay cells: An electron microscopic study in the cat using retrograde transport of horseradish peroxidase. J Neurocytol 10, 709–724 (1981). https://doi.org/10.1007/BF01262599

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01262599

Keywords

Navigation