Skip to main content
Log in

Transient stress relaxation around spherical inclusions by interfacial diffusion and sliding

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Stress relaxation in composites reinforced by hard, spherical inclusions by interfacial diffusion and interfacial sliding are studied separately. Somigliana dislocations are used to model the misfits at the matrix-inclusion interface. By adopting Papkovitch-Neuber displacement potentials, the transient fields of displacement and stress in the system of a single inclusion embedded in an infinite matrix under uniaxial tension are obtained explicitly. The overall anelastic behaviors of the composites are then analyzed on the basis of Mori-Tanaka mean-field approximation. Numerical results are illustrated, and some interesting concerns are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clyne, T. W., Withers, P. J.: An introduction to metal matrix composites. Cambridge: Cambridge University Press 1993.

    Google Scholar 

  2. Frost, H. J., Ashby, M. F.: Deformation-mechanism maps. Oxford: Pergamon Press 1982.

    Google Scholar 

  3. Herring, C.: Surface tension as a motivation for sintering. In: The physics of powder metallurgy (Kingston, W. E., ed.), pp. 143–179. New York: McGraw-Hill 1951.

    Google Scholar 

  4. Koeller, R. C., Raj, R.: Diffusional relaxation of stress concentration at second phase particles. Acta Metall.26, 1551–1558 (1978).

    Google Scholar 

  5. Mori, T., Okabe, M., Mura, T.: Diffusional relaxation around a second phase particle. Acta Metall.28, 319–325 (1980).

    Google Scholar 

  6. Onaka, S., Okada, T., Kato, M.: Relaxation kinetics and relaxed stresses caused by interface diffusion around spheroidal inclusions. Acta Metall.39, 971–978 (1991).

    Google Scholar 

  7. Mura, T.: Micromechanics of defects in solids. Dordrecht: Martinus Nijhoff 1987.

    Google Scholar 

  8. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. Lond.A241, 376–396 (1957).

    Google Scholar 

  9. Mori, T., Huang, J. H., Taya, M.: Stress relaxation by plastic flow, interfacial sliding and diffusion in an inclusion bearing material. Acta Metall.45, 429–438 (1997).

    Google Scholar 

  10. He, L. H., Zhao, J. H.: Evolution of stresses in composites with rigid inclusions during interface diffusion: a two-dimensional case. Int. J. Engng Sci. (forthcoming).

  11. Raj, R., Ashby, M. F.: On grain boundary sliding and diffusional creep. Metall. Trans.2, 1113–1127 (1971).

    Google Scholar 

  12. Ghahremani, F.: Effect of grain boundary sliding on anelasticity of polycrystals. Int. J. Solids Struct.16, 825–845 (1980).

    Google Scholar 

  13. Ghahremani, F.: Effect of grain boundary sliding on steady creep of polycrystals. Int. J. Solids Struct.16, 847–862 (1980).

    Google Scholar 

  14. Mura, T., Furuhashi, R.: The elastic inclusion with a sliding interface. J. Appl. Mech.51, 308–310 (1984).

    Google Scholar 

  15. Mura, T., Jasiuk, I., Tsuchida, E.: The stress field of a sliding inclusion. Int. J. Solids Struct.21, 1165–1179 (1985).

    Google Scholar 

  16. Tsuchida, E., Mura, T., Dunders, J.: The elastic field of an elliptical inclusion with a slipping interface. ASME J. Appl. Mech.53, 103–107 (1986).

    Google Scholar 

  17. Mori, T., Mura, T.: Blocking effect of inclusions on grain boundary sliding; spherical grain approximation. J. Mech. Phys. Solids.35, 631–641 (1997).

    Google Scholar 

  18. Mori, T., Nakasone, Y., Taya, M., Wakashima, K.: Steady-state creep rate of a composite: two-dimensional analysis. Phil. Mag. Lett.75, 359–365 (1997).

    Google Scholar 

  19. Mori, T., Onaka, S., Wakashima, K.: Role of grain-boundary sliding in diffusional creep of polycrystals. J. Appl. Phys.83, 7547–7552 (1998).

    Google Scholar 

  20. Onaka, S., Huang, J. H., Wakashima, K., Mori, T.: Kinetics of stress relaxation caused by the combination of interfacial sliding and diffusion: two-dimensional analysis. Acta Mater.46, 3821–3828 (1998).

    Google Scholar 

  21. Asaro, R. J.: Somigliana dislocations and internal stresses; with application to second phase hardening. Int. J. Engng Sci.13, 271–286 (1975).

    Google Scholar 

  22. Coble, R. L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys.34, 1679–1682 (1963).

    Google Scholar 

  23. Mori, T., Tanaka, K.: Average stress in matrix and average energy of materials with misfitting inclusions. Acta Metall.21, 571–574 (1973).

    Google Scholar 

  24. Weng, G. J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Engng Sci.21, 845–856 (1984).

    Google Scholar 

  25. Benveniste, Y.: A new approach to the application of Mori-Tanaka's theory in composite materials. Mech. Mater.6, 147–157 (1987).

    Google Scholar 

  26. Suo, Z.: Motion of microscopic surfaces in materials. Adv. Appl. Mech.33, 193–294 (1997).

    Google Scholar 

  27. Mal, A. K., Singh, S. J.: Deformation of elastic solids. New Jersey: Prentice-Hall 1991.

    Google Scholar 

  28. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. Amsterdam: North-Holland 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L.H. Transient stress relaxation around spherical inclusions by interfacial diffusion and sliding. Acta Mechanica 149, 115–133 (2001). https://doi.org/10.1007/BF01261667

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261667

Keywords

Navigation