Skip to main content
Log in

Most unstable waves of a stagnant planar liquid film blown by a high speed viscous gas with a Blasius velocity profile

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The linear most unstable waves generated on the surface of a stagnant planar liquid (gasoline) film with infinite thickness, blown by a high speed viscous gas (air) with a Blasius velocity profile, are computed and analyzed. The free-stream velocity of the gas ranges from 30 m/s to 50 m/s, which is typical of high speed atomization problems. The Reynolds number based on the local thickness of the boundarylayer lies between 200 and 2500. The numerical computation shows that the dimensional wavelength of the most unstable wave is a power functions of the boundary-layer thickness (or Reynolds number) with a power close to 3/4, while the growth rate is inversely proportional to the boundary-layer thickness. When reducing the boundary-layer thickness, the visocus results approach the inviscid results. This result shows that, under the present parameter range, the gas viscosity would have a secondary role on the atomization speed and important influence on the droplet size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bracco, F. V.: Modelling of engine sprays, SAE 850394, 144–167, 1985.

  2. Chandrasekhar, S.: The capillary instability of a liquid jet. In: Hydrodynamic and Hydromagnetic stability, 537–542. Oxford University Press 1961.

  3. Chigier, N., Reitz, R. D.: Regimes of jet breakup and breakup mechanisms (physical aspects). In: Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (KK. Kuo, ed.),1, 109–135. Reston, VA: AIAA 1996.

    Google Scholar 

  4. Chow, W. H., Hsiang, L. P., Faeth, G. M.: Temporal properties of drop breakup in the shear breakup regime. Int. J. Multiphase Flow23, 651–669.

  5. Clark, C. J., Dombrowski, N.: Aerodynamic instability and disintegration of inviscid liquid sheets. Proc. Roy. Lond.A 329, 467–478 (1972).

    Google Scholar 

  6. Cohen, R. D.: Shattering of a liquid drop due to impact. Proc. R. Soc. LondonA 435, 483–503 (1991).

    Google Scholar 

  7. Dumouchel, C., Ledoux, M.: Atomisation of flat and annular liquid sheets: practical use of linear theories. ICLASS-91, MD, U.S.A.,12, 157–164 (1991).

    Google Scholar 

  8. Leroux, S., Dumouchel, C., Ledoux, M.: The stability curve of Newtonian liquid. Atom. Spray6 623–647 (1996).

    Google Scholar 

  9. Drazin, P. G., Reitz, W. H.: Hydrodynamic Stability. Cambridge University Press 1981.

  10. Farago, Z., Chigier, N.: Morphological classification of disintegration of round liquid jets in a coaxial air stream. Atom. Spray2, 137–154 (1992).

    Google Scholar 

  11. Feldman, S.: On the hydrodynamic stability of two viscous incompressible fluids in parallel uniform shearing motion. J. Fluid. Mech.2, 137–154 (1992).

    Google Scholar 

  12. Gersting, J. M., Jankowski, D. F.: Numerical methods for Orr-Sommerfeld problems. Int. J. Numer. Meth. Eng.4, 195–206 (1972).

    Google Scholar 

  13. Kaufman, L.: The LZ-algorithm to solve the generalized eigenvalue problem. SIAM J. Numer. Anal.11, 997–1024 (1974).

    Google Scholar 

  14. Li, X.: Mechanism of atomization of a liquid jet. Atom. Spray5, 89–105 (1995).

    Google Scholar 

  15. Lin, S. P.: Regimes of jet breakup and breakup mechanisms (mathematical aspects). In: Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (KK. Kuo, ed.),1, 137–160. Reston, VA: AIAA 1996.

    Google Scholar 

  16. Lin, S. P., Chen, E. A.: Role played by the interfacial shear in the instability mechanism of a visous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech.376, 37–51 (1998).

    Google Scholar 

  17. Lin, S. P., Ibrahim, E. A.: Instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. J. Fluid Mech.218, 641–658 (1990).

    Google Scholar 

  18. Lin, S. P., Lian, Z. W.: Mechanisms of the breakup of liquid jets. AIAA J.28, 120–126 (1990).

    Google Scholar 

  19. Lin, S. P., Lian, Z. W.: Creighton, B. J.: Absolute and convective instability of a liquid sheet, J. Fluid Mech.220, 673–689 (1990).

    Google Scholar 

  20. Lin, S. P., Lian, Z. W.: Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids5, 771–773 (1993).

    Google Scholar 

  21. Lin, S. P., Reitz, R. D.: Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech.30, 85–105 (1998).

    Google Scholar 

  22. Li, X. G., Tankin, R. S.: Drop size distribution: a derivation of a Nukiyama-Tanasawa type distribution function. Combust. Flame56, 65 (1987).

    Google Scholar 

  23. Li, X. G., Tankin, R. S.: On the temporal instability of a two-dimensional viscous liquid sheet. J. Fluid Mech.226, 425–443 (1991).

    Google Scholar 

  24. Liu, Z., Reitz, R. D.: An analysis of the distorsion and breakup mechanisms of high speed liquid drops. Int. J. Multiphase Flow23,631–650 (1997).

    Google Scholar 

  25. McCarthy, M. J., Molloy, N. A.: Review of stability of liquid jets and the influence of nozzle design. The Chem. Eng. J.7, 1–20 (1974).

    Google Scholar 

  26. Meyer, J., Weihs, D.: Capillary instability of an annular liquid jet. J. Fluid Mech.179, 531–545 (1975).

    Google Scholar 

  27. Miles, J. W.: The hydrodynamic stability of a thin film of liquid in uniform shearing motion. J. Fluid Mech.8,593–610 (1960).

    Google Scholar 

  28. Miles, J. W.: Surface-wave generation revisited. J. Fluid Mech.256, 427–441 (1993).

    Google Scholar 

  29. Naber, J. D., Reitz, R. D.: Modeling engine spray/wall impingement. SAE Trans.6, 118–140 (1989).

    Google Scholar 

  30. Nogi, T., Ohyama, Y., Yamauchi, T., Kuroiwa, H.: Mixture formation of fuel injection systems in gasoline engines. SAE Paper 880558, (1988).

  31. Osborne, M. R.: Numberical methods for hydrodynamic stability problems. SIAM J. Appl. Math.15, 539–557 (1967).

    Google Scholar 

  32. Ranz, W. E.: Some experiments on orifice sprays. Can. J. Chem. Eng.36, 175–181 (1958).

    Google Scholar 

  33. Reitz, R. D., Bracco, F. V.: Mechanism of atomization of a liquid jet. Phys. Fluids25, 1730–1742 (1982).

    Google Scholar 

  34. Ranz, W. E., Dreier, W. M.: Initial instability of a viscous fluid interface. I&EC Fundamentals3, 53–60 (1964).

    Google Scholar 

  35. Sellens, R. W., Brzustowski, T. A.: A prediction of drop size distribution in a spray from first principles. Atom. Spray Technol.1, 89–102 (1985).

    Google Scholar 

  36. Smith, M. K., Davis, S. H.: The instability of sheared liquid layers. J. Fluid Mech.121, 187–206 (1982).

    Google Scholar 

  37. Squire, H. B.: Investigations of the instability of a moving liquid film. British J. Appl. Phys.4, 167–169 (1953).

    Google Scholar 

  38. Sterling, A. M., Sleicher, C. A.: The instability of capillary jets. J. Fluid Mech.68, 477–495 (1975).

    Google Scholar 

  39. Thomas, L. H.: The stability of plane poiseuille flow. Phys. Rev.91, 780–783 (1953).

    Google Scholar 

  40. Taylor, G. I.: The dynamics of thin sheets of fluid: III Disintegration of fluid sheets. Proc. Roy. Soc.253, 313–321 (1959).

    Google Scholar 

  41. Taylor, G. I.: Generation of ripples by wind blowing over a viscous fluid. The Scientific Papers of G. I. Taylor. Cambridge University Press.3, 244–254 (1963).

    Google Scholar 

  42. Wu, K. J., Reitz, R. D., Bracco, F. V.: Drop sizes of atomizing jets. Phys. Fluids29, 941–951 (1986).

    Google Scholar 

  43. Wu, Z. N.: Convergence study of an implicit multidomain method for compressible flow computations. Computers and Fluids25, 181–196 (1996).

    Google Scholar 

  44. Wu, Z. N., Zou, H.: Grid overlapping for implicit parallel computations of compressible flows. J. Comput. Phys.157, 2–42 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z.N. Most unstable waves of a stagnant planar liquid film blown by a high speed viscous gas with a Blasius velocity profile. Acta Mechanica 149, 69–83 (2001). https://doi.org/10.1007/BF01261664

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261664

Keywords

Navigation