Skip to main content
Log in

Convergence and summability of Gabor expansions at the Nyquist density

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

It is well known that Gabor expansions generated by a lattice of Nyquist density are numerically unstable, in the sense that they do not constitute frame decompositions. In this paper, we clarify exactly how “bad” such Gabor expansions are, we make it clear precisely where the edge is between “enough” and “too little,” and we find a remedy for their shortcomings in terms of a certain summability method. This is done through an investigation of somewhat more general sequences of points in the time-frequency plane than lattices (all of Nyquist density), which in a sense yields information about the uncertainty principle on a finer scale than allowed by traditional density considerations. An important role is played by certain Hilbert scales of function spaces, most notably by what we call the Schwartz scale and the Bargmann scale, and the intrinsically interesting fact that the Bargmann transform provides a bounded invertible mapping between these two scales. This permits us to turn the problems into interpolation problems in spaces of entire functions, which we are able to treat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bargmann, V. (1967). On a Hilbert space of analytic functions and an associated integral transform, Part II,Comm. Pure Appl. Math.,20, 1–100.

    Google Scholar 

  2. Bastiaans, M. J. (1980). Gabor's signal expansion and degrees of freedom of a signal,Proc. IEEE,68, 538–539.

    Google Scholar 

  3. Battle, G. (1988). Heisenberg proof of the Balian-Low theorem,Lett. Math. Phys.,15, 175–177.

    Google Scholar 

  4. Coifman, R.R. and Fefferman, C. (1974). Weighted norm inequalities for maximal functions and singular integrals,Studia Math.,51, 241–250.

    Google Scholar 

  5. Duffin, R.J. and Schaeffer, A.C. (1952). A class of nonharmonic Fourier series,Trans. Am. Math. Soc.,72, 341–366.

    Google Scholar 

  6. Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis,IEEE Trans. Inform. Theory,36, 961–1005.

    Google Scholar 

  7. Daubechies, I. and Grossmann, A. (1988). Frames in the Bargmann space of entire functions,Comm. Pure Appl. Math.,41, 151–164.

    Google Scholar 

  8. Feichtinger, H.G. (1997). Regular and Irregular Sampling in Gabor Analysis,Proc. 1997 Int. Workshop Sampling Theory Appl., June 16–19, Aveiro, Portugal, 465–466.

  9. Folland, G.B. (1989).Harmonic Analysis in Phase Space, Princeton University Press, Princeton NJ.

    Google Scholar 

  10. Gabor, D. (1946). Theory of communication,J. IEE (London),93(III), 429–457.

    Google Scholar 

  11. Goluzin, G.M. (1958).Geometrische Funktionentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  12. Hörmander, L. (1990).An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, 7, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  13. Janssen, A.J.E.M. (1981). Gabor representation of generalized functions,J. Math. Appl.,80, 377–394.

    Google Scholar 

  14. Janssen, A.J.E.M. (1982). Bargmann transform, Zak transform and coherent states,J. Math. Phys.,23(5), 720–731.

    Google Scholar 

  15. Katsnelson, V.E. (1969). Generalization of the Paley-Wiener theorem on the representation of entire functions of finite degree,Teor. Funktsij. Funkts. Anal. i Prilozhen.,1, 99–110.

    Google Scholar 

  16. Kadec, M.I. (1964). The exact value of the Paley-Wiener constant,Dokl. Akad. Nauk. SSSR,155, 1139–1141. (Russian, English translation inSov. Math. Dokl.,5, 559–561.)

    Google Scholar 

  17. Gohberg, I.Z. and Krein, M.G. (1969).Introduction to the Theory of Linear Non-self-adjoint Operators, Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, RI,. 47.10.

    Google Scholar 

  18. Krein, S.G. and Petunin, Yu. I. (1966). Scales of Banach spaces,Russian Math. Surveys,21(2), 85–159.

    Google Scholar 

  19. Krushev, S.V., Nikol'skii, N.K., and Pavlov, B.S. (1981). Unconditional bases of exponential and reproducing kernels, inComplex Analysis and Spectral Theory, Lecture Notes in Mathematics,864, Springer-Verlag, 214–335, Springer-Verlag, Germany.

    Google Scholar 

  20. Levin, B. Ya. (1961). On bases of exponential functions inL 2,zap. Har'kov. Gos. Univ. i Har'kov Mat. Obšč.,4,27, 39–18.

    Google Scholar 

  21. Levin, B. Ya. (1996).Lectures on Entire Functions, American Mathematical Society, Providence, RI.

    Google Scholar 

  22. Levinson, N. (1940).Gap and Density Theorems, American Mathematical Society Colloquium Publications, Vol. 26, American Mathematical Society, New York.

    Google Scholar 

  23. Liht, M.K. (1964). A remark on the Paley-Wiener theorem on entire functions of finite degree,Uspehi Mat. Nauk,19, 169–171.

    Google Scholar 

  24. Lutsenko, V.I. and Yulmukhametov, R.S. (1991). Generalization of the Wiener-Paley theorem to functionals in Smirnov spaces, inNumber Theory, Algebra, Mathematical Analysis and Their Applications, Trudy-Mat.-Inst.-Steklov,200, 245–254.

    Google Scholar 

  25. Lyubarskii, Yu.I. (1992). Frames in the Bargmann space of entire functions, inEntire and Subharmonic Functions, 167–180, Adv. Soviet Math.,11, American Mathematical Society, Providence, RI.

    Google Scholar 

  26. Lyubarskii, Yu.I. (1988). The Paley-Wiener theorem for convex sets,Izvestija Academmi Nauk Armenii,23, 163–172. (English translation inSoviet J. Contemporary Math. Anal.,23(2), 64–74.)

    Google Scholar 

  27. Lyubarskii, Yu.I. (1988). Exponential series in Smirnov spaces and interpolation by entire functions of special classes,Math. USSR Izvestiya,32, 563–586.

    Google Scholar 

  28. Lyubarskii, Yu.I. and Seip, K. (1994). Sampling and interpolation of entire functions and exponential systems in convex domains,Ark. Mat.,32, 157–193.

    Google Scholar 

  29. Lyubarskii, Yu.I. and Sodin, M.L. (1986).Analogues of Sine Type Functions for Convex Domains, Preprint no.17, Inst. Low Temperature Phys. Engrg., Ukrainian Acad. Sci., Kharkov, (Russian).

    Google Scholar 

  30. Seip, K. (1992). Density theorems for sampling and interpolation in the Bargmann-Fock space, I,J. Reine Angew. Math.,429, 91–106

    Google Scholar 

  31. Seip, K. and Wallstén, R. (1992). Density theorems for sampling and interpolation in the Bargmann-Fock space, II,J. Reine Angew. Math.,429, 107–113.

    Google Scholar 

  32. Stein, E.M. (1970).Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ.

    Google Scholar 

  33. Whittaker, E.T. and Watson, G.N. (1952).A Course of Modern Analysis, Cambridge University Press, Cambridge.

    Google Scholar 

  34. Young, R.M. (1980).An Introduction to Nonharmonic Fourier Series, Academic Press, New York.

    Google Scholar 

  35. Zygmund, A. (1968).Trigonometric Series, (en2nd ed)., Cambridge University Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A.J.E.M. Janssen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubarskii, Y.I., Seip, K. Convergence and summability of Gabor expansions at the Nyquist density. The Journal of Fourier Analysis and Applications 5, 127–157 (1999). https://doi.org/10.1007/BF01261606

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261606

Math subject classifications

Navigation