List edge colourings of some 1-factorable multigraphs


The List Edge Colouring Conjecture asserts that, given any multigraphG with chromatic indexk and any set system {S e :eE(G)} with each |S e |=k, we can choose elementss e S e such thats e s f whenevere andf are adjacent edges. Using a technique of Alon and Tarsi which involves the graph monomial\(\prod {\left\{ {xu - x_\upsilon :u\upsilon \in E} \right\}}\) of an oriented graph, we verify this conjecture for certain families of 1-factorable multigraphs, including 1-factorable planar graphs.

This is a preview of subscription content, access via your institution.


  1. [1]

    N. Alon: Restricted colorings of graphs, in:“Surveys in Combinatorics”, Proc. 14th British Combinatorial Conference, London Mathematical Society Lecture Notes Series 187, edited by K. Walker, Cambridge University Press, 1993, 1–33.

  2. [2]

    N. Alon, andM. Tarsi: Colorings and orientations of graphs,Combinatorica,12, (1992), 125–134.

    Google Scholar 

  3. [3]

    B. Bollobás, andH. R. Hind: A new upper bound for the list chromatic number,Discrete Math.,74, (1989), 65–75.

    Google Scholar 

  4. [4]

    Amanda Chetwynd, andRoland Häggkvist: A note on list-colorings,J. Graph Theory,13 (1989), 87–95.

    Google Scholar 

  5. [5]

    P. Erdős, A. Rubin, andH. Taylor: Choosability in graphs,Congr. Numer.,26, (1979), 125–157.

    Google Scholar 

  6. [6]

    H. Fleischner, andM. Stiebitz: A solution to a colouring problem of P. Erdős,Discrete Math,101, (1992), 39–48.

    Google Scholar 

  7. [7]

    F. Galvin: The list chromatic index of a bipartite multigraph,J. Combin. Theory, Ser. B,63 (1995), 153–159.

    Google Scholar 

  8. [8]

    R. Häggkvist, andJ. Janssen: New bounds on the list-chromatic index of the complete graph,Combin. Probab. Comput, to appear.

  9. [9]

    F. Jaeger: On the Penrose number of cubic diagrams,Discrete Math.,74 (1989), 85–97.

    Google Scholar 

  10. [10]

    S.-Y. R. Li, andW.-C. W. Li: Independence numbers of graphs and generators of ideals,Combinatorica,1 (1981), 55–61.

    Google Scholar 

  11. [11]

    Julius Petersen: Die Theorie der regulären graphs,Acta Math.,15 (1891), 193–220.

    Google Scholar 

  12. [12]

    G. Sabidussi: Binary invariants and orientations of graphs,Discrete Math.,101 (1992), 251–277.

    Google Scholar 

  13. [13]

    David E. Scheim: The number of edge 3-colorings of a planar cubic graph as a permanent,Discrete Math.,8 (1974), 377–382.

    Google Scholar 

  14. [14]

    P. D. Seymour: Some unsolved problems on one-factorizations of graphs,Graph Theory and Related Topics, edited by J. A. Bondy and U. S. R. Murty, Academic Press (1979) 367–368.

  15. [15]

    Andrew Thomason: Cubic graphs with three hamiltonian cycles are not always uniquely edge colourable,J. Graph Theory,6 (1982), 219–221.

    Google Scholar 

  16. [16]

    L. Vigneron: Remarques sur les réseaux cubiques de classe 3 associés au problème des quatre couleurs,C. R. Acad. Sc. Paris,223 (1946), 770–772.

    Google Scholar 

  17. [17]

    Roger Penrose: Applications of negative dimensional tensors, in:Combinatorial Mathematics and its Applications, Proc. Conf., Oxford, 1969. Academic Press, London, 1971, 221–244.

    Google Scholar 

Download references

Author information



Additional information

Supported by the University Research Council of Vanderbilt University and NSERC Canada grants A5414 and A5499.

Supported by NSERC Canada grant A5499

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ellingham, M.N., Goddyn, L. List edge colourings of some 1-factorable multigraphs. Combinatorica 16, 343–352 (1996).

Download citation

Mathematics Subject Classification (1991)

  • 05C15
  • (05C70, 05C10)