Skip to main content
Log in

m-isometric transformations of Hilbert space,II

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [Ag1] Agler, J.,Subjordan operators, Thesis, Indiana University, 1980.

  • [Ag2] Agler, J., “The Arveson extension theorem and coanalytic models,”Integral Equations and Operator Theory 5 (1982), 608–631.

    Google Scholar 

  • [Ag3] Agler, J.,An Abstract Approach to Model Theory, Surveys of some recent results in operator theory Vol2, Pitman Research Notes in Mathematics Series; ISSN 0269-3674;192, 1–24.

  • [Ag4] Agler, J., “A Disconjugacy Theorem for Toeplitz Operators”,American Journal of Mathematics,112 (1990), 1–14.

    Google Scholar 

  • [Ag5] Agler, J., “Sub-Jordan Operators Bishop's Theorem, Spectral Inclusion and Spectral Sets”,J. Operator Theory 7 (1982), 373–395.

    Google Scholar 

  • [Ag6] Agler, J., “Hypercontractions and Subnormality”,J. Operator Theory 13 (1985), 203–217.

    Google Scholar 

  • [Ag7] Agler, J., “Rational Dilation of an annulus”,Annals of Mathematics,121 (1985), 537–563.

    Google Scholar 

  • [AgSt] Agler, J., Stankus, M. “m-Isometric Transformations Of Hilbert Space”,Journal Of Integral Equations and Operator Theory,21 (1995) #4.

    Google Scholar 

  • [Arv1] Arveson, W.B., “Subalgebras ofC *-algebras”,Acta Math. 123 (1969), 141–224.

    Google Scholar 

  • [Arv2] Arveson, W.B., “Subalgebras ofC *-algebras II”,Acta Math. 128 (1972), 271–308.

    Google Scholar 

  • [B] Beurling, A., “On two problems concerning Linear transformations in Hilbert space,”Acta. Math. 81 (1949), 239–255.

    Google Scholar 

  • [Ber-S] Berger, C.A., Shaw, B.L., “Self-commutators of multicyclic hyponormal operators are always trace class”, B.A.M.S.,79 (1973), 1193–1199.

    Google Scholar 

  • [Bir-S] Birman, M. S., and Solomjak, M. Z.,Spectral Theory of self-adjoint Operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1986.

    Google Scholar 

  • [Br-R] de Branges, L., Rovnyak, J.,Square Summable Power Series, New York, Holt, Rinehart and Winston, 1966.

    Google Scholar 

  • [C] Conway, John B.,A Course in Functional Analysis, New York/Berlin/Heidelberg/ Tokyo, Springer-Verlag, 1985.

    Google Scholar 

  • [Ca] Calkin, J.W., “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”,Ann. of Math. (2)42 (1941), 839–873.

    Google Scholar 

  • [C-F] Colojoară, I., Foias C.,Theory of Generalized spectral Operators, New York, Gordon and Breach, 1968.

    Google Scholar 

  • [C-P] Curto, R.E. and Putinar, M., “Existence of non-subnormal polynomially hyponormal operators”, B.A.M.S.,25 (1991) #2, 373–378.

    Google Scholar 

  • [F] Fillmore, P. A.,Notes on operator theory, New York, Van Nostrand, 1970.

    Google Scholar 

  • [Fr] Franks, E.,Polynomially subnormal operator tuples, Thesis, University of California, San Diego, 1991.

    Google Scholar 

  • [Ha] Halmos, P.R.,A Hilbert space problem book, Princeton, D. Van Nostrand, 1970.

    Google Scholar 

  • [H1] Helton, J. W., “Operators with a representation as multiplication byx on a Sobolev space,”Colloquia Math. Soc. Janos Bolyai 5, Hilbert Space Operators, Tihany, Hungary (1970), 279–287.

    Google Scholar 

  • [H2] Helton, J. W., “Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory,”Trans. Amer. Math. Soc. 170 (1972), 305–331.

    Google Scholar 

  • [H3] Helton, J. W.,Operator Theory, analytic functions, matrices, and electrical engineering, Conference Board of the Mathematical Sciences by the American Mathematical Society, 1987.

  • [Hel] Helson, H.,Lectures on Invariant Subspaces, New York, Academic Press, 1964.

    Google Scholar 

  • [M1] McCullough, S.A.,3-isometries, Thesis, University of California, San Diego, 1987.

    Google Scholar 

  • [M2] McCullough, S.A., “SubBrownian Operators”,J. Operator Theory,22 (1989) 2, 291–305.

    Google Scholar 

  • [M-G] Boutet de Monvel and V. Guillemin,The spectral theory of Toeplitz operators, Princeton University Press, Princeton N.J., University of Tokyo Press, Tokyo, 1981.

    Google Scholar 

  • [N] Nielsen, O.A., “Direct Integral Theory,”Lecture notes in pure and applied mathematics, vol.61, Marcel Dekker, Inc, New York and Basel, 1980.

    Google Scholar 

  • [P] Putnam, C.R., “An inequality for the area of hyponormal spectra”,Math. Z.,116 (1970), 323–330.

    Google Scholar 

  • [R1] Richter, S., “Invariant subspaces of the Dirichlet shift,”J. reine agnew. Math. 386 (1988), 205–220.

    Google Scholar 

  • [R2] Richter, S., “A representation theorem for cyclic analytic two-isometries,”Trans. Amer. Math. Soc., to appear.

  • [Sa] Sarason, D., “Doubly shift-invariant spaces inH 2,”J. Operator Theory 16 (1986), 75–97.

    Google Scholar 

  • [Steg] Stegenga, D.A., “Multipliers of Dirichlet space”, Ill.Jour. of Math. 24 (1980), 113–139.

    Google Scholar 

  • [St] Stankus, M.,Isosymmetric Linear Transformations On Complex Hilbert Space, Thesis, University of California, San Diego, 1993.

    Google Scholar 

  • [Sti] Stinespring, W.F., “Positive functions onC *-algebras”, P.A.M.S.6 (1955), 211–216.

    Google Scholar 

  • [Sz.-N,F] Sz.-Nagy. Foias, C.,Harmonic analysis of operators in Hilbert space, North Holland, Amsterdam, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agler, J., Stankus, M. m-isometric transformations of Hilbert space,II. Integr equ oper theory 23, 1–48 (1995). https://doi.org/10.1007/BF01261201

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261201

AMS subject classification

Navigation