References
[Ag1] Agler, J.,Subjordan operators, Thesis, Indiana University, 1980.
[Ag2] Agler, J., “The Arveson extension theorem and coanalytic models,”Integral Equations and Operator Theory 5 (1982), 608–631.
[Ag3] Agler, J.,An Abstract Approach to Model Theory, Surveys of some recent results in operator theory Vol2, Pitman Research Notes in Mathematics Series; ISSN 0269-3674;192, 1–24.
[Ag4] Agler, J., “A Disconjugacy Theorem for Toeplitz Operators”,American Journal of Mathematics,112 (1990), 1–14.
[Ag5] Agler, J., “Sub-Jordan Operators Bishop's Theorem, Spectral Inclusion and Spectral Sets”,J. Operator Theory 7 (1982), 373–395.
[Ag6] Agler, J., “Hypercontractions and Subnormality”,J. Operator Theory 13 (1985), 203–217.
[Ag7] Agler, J., “Rational Dilation of an annulus”,Annals of Mathematics,121 (1985), 537–563.
[AgSt] Agler, J., Stankus, M. “m-Isometric Transformations Of Hilbert Space”,Journal Of Integral Equations and Operator Theory,21 (1995) #4.
[Arv1] Arveson, W.B., “Subalgebras ofC *-algebras”,Acta Math. 123 (1969), 141–224.
[Arv2] Arveson, W.B., “Subalgebras ofC *-algebras II”,Acta Math. 128 (1972), 271–308.
[B] Beurling, A., “On two problems concerning Linear transformations in Hilbert space,”Acta. Math. 81 (1949), 239–255.
[Ber-S] Berger, C.A., Shaw, B.L., “Self-commutators of multicyclic hyponormal operators are always trace class”, B.A.M.S.,79 (1973), 1193–1199.
[Bir-S] Birman, M. S., and Solomjak, M. Z.,Spectral Theory of self-adjoint Operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1986.
[Br-R] de Branges, L., Rovnyak, J.,Square Summable Power Series, New York, Holt, Rinehart and Winston, 1966.
[C] Conway, John B.,A Course in Functional Analysis, New York/Berlin/Heidelberg/ Tokyo, Springer-Verlag, 1985.
[Ca] Calkin, J.W., “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”,Ann. of Math. (2)42 (1941), 839–873.
[C-F] Colojoară, I., Foias C.,Theory of Generalized spectral Operators, New York, Gordon and Breach, 1968.
[C-P] Curto, R.E. and Putinar, M., “Existence of non-subnormal polynomially hyponormal operators”, B.A.M.S.,25 (1991) #2, 373–378.
[F] Fillmore, P. A.,Notes on operator theory, New York, Van Nostrand, 1970.
[Fr] Franks, E.,Polynomially subnormal operator tuples, Thesis, University of California, San Diego, 1991.
[Ha] Halmos, P.R.,A Hilbert space problem book, Princeton, D. Van Nostrand, 1970.
[H1] Helton, J. W., “Operators with a representation as multiplication byx on a Sobolev space,”Colloquia Math. Soc. Janos Bolyai 5, Hilbert Space Operators, Tihany, Hungary (1970), 279–287.
[H2] Helton, J. W., “Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory,”Trans. Amer. Math. Soc. 170 (1972), 305–331.
[H3] Helton, J. W.,Operator Theory, analytic functions, matrices, and electrical engineering, Conference Board of the Mathematical Sciences by the American Mathematical Society, 1987.
[Hel] Helson, H.,Lectures on Invariant Subspaces, New York, Academic Press, 1964.
[M1] McCullough, S.A.,3-isometries, Thesis, University of California, San Diego, 1987.
[M2] McCullough, S.A., “SubBrownian Operators”,J. Operator Theory,22 (1989) 2, 291–305.
[M-G] Boutet de Monvel and V. Guillemin,The spectral theory of Toeplitz operators, Princeton University Press, Princeton N.J., University of Tokyo Press, Tokyo, 1981.
[N] Nielsen, O.A., “Direct Integral Theory,”Lecture notes in pure and applied mathematics, vol.61, Marcel Dekker, Inc, New York and Basel, 1980.
[P] Putnam, C.R., “An inequality for the area of hyponormal spectra”,Math. Z.,116 (1970), 323–330.
[R1] Richter, S., “Invariant subspaces of the Dirichlet shift,”J. reine agnew. Math. 386 (1988), 205–220.
[R2] Richter, S., “A representation theorem for cyclic analytic two-isometries,”Trans. Amer. Math. Soc., to appear.
[Sa] Sarason, D., “Doubly shift-invariant spaces inH 2,”J. Operator Theory 16 (1986), 75–97.
[Steg] Stegenga, D.A., “Multipliers of Dirichlet space”, Ill.Jour. of Math. 24 (1980), 113–139.
[St] Stankus, M.,Isosymmetric Linear Transformations On Complex Hilbert Space, Thesis, University of California, San Diego, 1993.
[Sti] Stinespring, W.F., “Positive functions onC *-algebras”, P.A.M.S.6 (1955), 211–216.
[Sz.-N,F] Sz.-Nagy. Foias, C.,Harmonic analysis of operators in Hilbert space, North Holland, Amsterdam, 1970.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Agler, J., Stankus, M. m-isometric transformations of Hilbert space,II. Integr equ oper theory 23, 1–48 (1995). https://doi.org/10.1007/BF01261201
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01261201