Skip to main content
Log in

Subcellular distribution of glutamic acid decarboxylase in rat brain regions following electroconvulsive stimulation

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Electroconvulsive stimulation of rats evoked significant increases of glutamic acid decarboxylase (GAD) activity in the synaptosomal fractions of neocortex (including white matter) and hippocampal formation. The elevation of synaptosomal-bound GAD activity was not significant in cingulate cortex, striatum, caudal brainstem and thalamus.

The electroconvulsive shocks had no effect on the GAD activity of the cytoplasmic fractions of any brain regions investigated. The highest physiological level of synaptosomal GAD activity was found in thalamus, followed (in decreasing order) by striatum, hippocampus, cingulate cortex, caudal brainstem and neocortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel, I., Fleissner, A., Seifert, R.: Synaptic vesicles from hog brain-their isolation and the coupling between synthesis and uptake ofγ-amino-butyrate by glutamate decarboxylase. Neurochem. Int.5, 697–712 (1983).

    Google Scholar 

  • Blindermann, J. M., Maitre, M., Mandel, P.: Studies on glutamate decarboxylase of the mammalian brain. In: GABA-Biochemistry and CNS-Functions (Mandel, P., De Feudis, F. V., eds.), pp. 79–92. New York-London: Plenum Press. 1978.

    Google Scholar 

  • Covarmbias, M., Tapia, R.: Calcium dependent binding of brain glutamate decarboxylase to phospholipid vesicles. J. Neurochem.31, 1209–1214 (1978).

    PubMed  Google Scholar 

  • Covarrubias, M., Tapia, R.: Brain glutamate decarboxylase: properties of its calcium dependent binding to liposomes and kinetics of the bound and free enzyme. J. Neurochem.34, 1682–1688 (1980).

    PubMed  Google Scholar 

  • Fonnum, F.: Choline acetyltransferase binding to and release from membranes. Biochem. J.101, 389–398 (1968 a).

    Google Scholar 

  • Fonnum, F.: The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem. J.106, 401–412 (1968 b).

    PubMed  Google Scholar 

  • Fonnum, F., Malthe-Sørenssen, D.: Membrane affinities and subcellular distribution of the different molecular forms of choline acetyltransferase from rat. J. Neurochem.20, 1351–1359 (1973).

    PubMed  Google Scholar 

  • Gál, E. M.: Tryptophan 5-hydroxylase: function and control. Adv. Biochem. Pharmacol.4, 1–30 (1974).

    Google Scholar 

  • Katz, B., Miledi, R.: Further study of the role of calcium in synaptic transmission. J. Physiol. (Lond.)207, 789–801 (1970).

    Google Scholar 

  • Llinás, R., Steinberg, I. Z., Walton, K.: Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc. nat. Acad. Sci. (Wash.)73, 2918–2922 (1976).

    Google Scholar 

  • Miller, P. L., Walters, J. R.: Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes. J. Neurochem.33, 533–539 (1979).

    PubMed  Google Scholar 

  • Roberts, F.:γ-aminobutyric acid (GABA): A major inhibitory transmitter in the vertebrate nervous system. Pontif. Acad. Sci. Scrip. Var.45, 163–213 (1980).

    Google Scholar 

  • Salganicoff, L., De Robertis, E.: Subcellular distribution of the enzymes of the glutamic acid, glutamine and GABA cycles in rat brain. J. Neurochem.12, 287–309 (1965).

    PubMed  Google Scholar 

  • Tapia, R., Sandoval, M. E., Contreras, P.: Evidence for a role of glutamate decarboxylase as a regulatory mechanism of cerebral excitability. J. Neurochem.24, 1283–1285 (1975).

    PubMed  Google Scholar 

  • Tsudzuki, T.: Studies on the uptake of (3H) dopamine by synaptic vesicle fraction isolated from bovine brain. J. Biochem.89, 61–69 (1981).

    PubMed  Google Scholar 

  • Wood, J. B., McLaughlin, B. J., Vaughn, J. E.: Immunocytochemical localization of GAD in electron microscopic preparations of rodent CNS. In: GABA in Nervous System Function (Roberts, E., Chase, T. N., Tower, D. B., eds.), pp. 133–148. New York: Raven Press. 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzer, A., Laas, R. & Fleissner, A. Subcellular distribution of glutamic acid decarboxylase in rat brain regions following electroconvulsive stimulation. J. Neural Transmission 62, 99–106 (1985). https://doi.org/10.1007/BF01260419

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01260419

Keywords

Navigation