Skip to main content

Excitatory amino acid receptors in the rostral ventrolateral medulla mediate hypertension induced by carotid body chemoreceptor stimulation

Abstract

The rostral ventrolateral medulla (RVLM) is involved in the mediation of cardiovascular responses to peripheral chemoreceptor stimulation. To investigate whether excitatory amino acid inputs in the RVLM are related to the responses to chemoreceptor stimulation, we microinjected kynurenate, an amino acid antagonist, unilaterally into the RVLM and examined its effects on the pressor response to stimulation of carotid body chemoreceptors. Male Wistar rats were anesthetized with urethane, paralyzed and artificially ventilated. The carotid chemoreceptors were stimulated with isotonic solutions of inorganic phosphate solution.

Stimulation of carotid body chemoreceptors produced increases in blood pressure. Kynurenate injected ipsilaterally but not contralaterally into the RVLM markedly inhibited the pressor response to chemoreceptor stimulation. In rats with spinal transection, stimulation of carotid body chemoreceptors also produced increases in blood pressure. The pressor response in rats with spinal transection was inhibited by intravenous injection of a vasopressin antagonist or by kynurenate injected ipsilaterally into the RVLM. Kynurenate injected into the RVLM inhibited the pressor response to NMDA, AMPA and kainate but not to acetylcholine in intact rats. These findings indicate that excitatory amino acid receptors are involved in mediating the pressor response to carotid body chemoreceptor stimulation in the rat RVLM. It appears that the chemoreceptor stimulation produces an increase in vasopressin release and the enhancement of vasopressin release is also mediated by an increase in excitatory amino acid inputs in the RVLM.

This is a preview of subscription content, access via your institution.

References

  1. Amendt K, Czachurski J, Dembowsky K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column; a neuroanatomical study. J Anton Nerv Syst 1:103–117

    Article  CAS  Google Scholar 

  2. Blessing WW Willoughby JO (1985) Inhibiting the rabbit caudal ventrolateral medulla prevents baroreceptor-initiated secretion of vasopressin. J Physiol 367:253–265

    PubMed  CAS  Google Scholar 

  3. Brown DL, Guyenet PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247:R1009-R1016

    PubMed  CAS  Google Scholar 

  4. Brown DL, Guyenet PG (1985) Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circulation Res 56:359–369

    PubMed  CAS  Google Scholar 

  5. Caverson MM, Ciriello J (1984) Electrophysiological identification of neurons in ventrolateral medulla sending collateral axons to paraventricular and supraoptic nuclei in the cat. Brain Res 305: 375–379

    PubMed  Article  CAS  Google Scholar 

  6. Caverson MM, Ciriello J, Calaresu FR (1983) Cardiovascular afferent inputs to neurons in the ventrolateral medulla projecting directly to the central autonomic area of the thoracic cord in the cat. Brain Res 247:354–358

    Article  Google Scholar 

  7. Dampney RAL, Goodchild AK, Robertson LG, Montgomery W (1982) Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res 249:223–235

    PubMed  Article  CAS  Google Scholar 

  8. Davies RO, Edwards MW (1973) Distribution of carotid body chemoreceptor afferents in the medulla of the cat. Brain Res 64:451–454

    PubMed  Article  CAS  Google Scholar 

  9. Day TA, Renaud LP (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res 303:233–240

    PubMed  Article  CAS  Google Scholar 

  10. Day TA, Ferguson AV, Renaud LP (1984) Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells. J Physiol 355:237–249

    PubMed  CAS  Google Scholar 

  11. Finley JCW, Katz DM (1992) The central organization of carotid body afferent projections to the brainstem of the rat. Brain Res 572: 108–116

    PubMed  Article  CAS  Google Scholar 

  12. Gieroba ZJ, Blessing WW (1993) Blockade of excitatory amino acid receptors in the ventrolateral medulla does not abolish the cardiovascular actions ofl-glutamate. Naunyn-Schmiedeberg's Arch Pharmacol 347:66–72

    Article  CAS  Google Scholar 

  13. Guyenet PG, Filtz TM, Donaldson SR (1987) Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res 407:272–284

    PubMed  Article  CAS  Google Scholar 

  14. Harris MC (1979) Effects of chemoreceptor and baroreceptor stimulation on the discharge of hypothalamic supraoptic neurons in rats. J Endocrinol 82:115–125

    PubMed  Article  CAS  Google Scholar 

  15. Hashemzadeh-Gargari H, Baertschi AJ, Guyenet PG (1988) Baroreceptor-independent medullary mechanism for release of vasopressin during hypotension in rats. J Endocrinol 118:101–111

    PubMed  Article  CAS  Google Scholar 

  16. Hilton SM, Marshall JM (1982) The pattern of cardiovascular response to carotid chemoreceptor stimulation in the cat. J Physiol 326: 495–513

    PubMed  CAS  Google Scholar 

  17. Hilton SM, Marshall JM, Timms RJ (1983) Ventral medullary relay neurons in the pathway from the defence areas of the cat and their effect on blood pressure. J Physiol 354:149–166

    Google Scholar 

  18. Jackson H, Nemeth EF, Parks TN (1985) Non N-methyl-D-aspartate receptors mediating synaptic transmission in the avian cochlear nucleus: effects of kynurenic acid, dipicolinic acid and streptomycin. Neuroscience 16:171–180

    PubMed  Article  CAS  Google Scholar 

  19. Jamieson SM, Harris MC (1989) Stimulation of carotid body chemoreceptors does not influence the discharge of Al neurons projecting to the forebrain. Neuroscience 32:227–234

    PubMed  Article  CAS  Google Scholar 

  20. Kannan H, Yamashita H, Osaka T (1984) Paraventricular neurosecretory neurons: synaptic inputs from the ventrolateral medulla in rats. Neurosci Lett 51:183–188

    PubMed  Article  CAS  Google Scholar 

  21. Kao M-C, Lee HK, Chai CY, Wang Y (1991) NMDA antagonists attenuate hypertension induced by carotid clamping in the rostral ventrolateral medulla of rats. Brain Res 549:83–89

    PubMed  Article  CAS  Google Scholar 

  22. Kihara M, Misu Y, Kubo T (1989) Release by electrical stimulation of endogenous glutamate, γ-aminobutyric acid, and other amino acids from slices of the rat medulla oblongata. J Neurochem 52:261–267

    PubMed  Article  CAS  Google Scholar 

  23. Kleinman LI, Radford EP (1964) Ventilation standards for small mammals. J Appl Physiol 19:360–362

    PubMed  CAS  Google Scholar 

  24. Kobashi M, Adachi A (1990) A hepatoportal osmoreceptive afferent projection from nucleus tractus solitarius to caudal ventrolateral medulla. Brain Res Bull 24:775–778

    PubMed  Article  CAS  Google Scholar 

  25. Krieger EM (1964) Neurogenic hypertension in the rat. Circulation Res 15:511–521

    PubMed  CAS  Google Scholar 

  26. Kruszynski M, Lammek B, Manning M (1980) (1-β,mercapto-β-cyclo-pentamethylene propionic acid), 2(O-methyl)tyrosine-arginine-vasopressin and (1-β-mercapto-β,β-cyclopentamethylenepropionic acid)-arginine-vasopressin, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem 23:364–368

    PubMed  Article  CAS  Google Scholar 

  27. Kubo T, Amano H (1986) Vasopressin-induced pressor responses in rats to bilateral electrolytic lesioning of the caudal portion of the nucleus tractus solitarii. Brain Res 363:183–187

    PubMed  Article  CAS  Google Scholar 

  28. Kubo T, Kihara M (1991) Unilateral blockade of excitatory amino acid receptors in the nucleus tractus solitarii produces an inhibition of baroreflexes in rats. Naunyn-Schmiedeberg's Arch Pharmacol 343:317–322

    CAS  Google Scholar 

  29. Kubo T, Amano H, Misu Y (1985) Caudal ventrolateral medulla. A region responsible for the mediation of vasopressin-induced pressor responses. Naunyn-Schmiedeberg's Arch Pharmacol 328:368–372

    Article  CAS  Google Scholar 

  30. Kubo T, Kihara M, Misu Y (1990) Electrical stimulation-evoked release of endogenous aspartate from rat medulla oblongata slices. Naunyn-Schmiedeberg's Arch Pharmacol 341:221–224

    Article  CAS  Google Scholar 

  31. Kubo T, Nagura J, Kihara M, Misu Y (1986) Cardiovascular effects of L-glutamate and γ-aminobutyric acid injected into the rostra] ventrolateral medulla in normotensive and spontaneously hypertensive rats. Arch int Pharmacodyn 279:150–161

    PubMed  CAS  Google Scholar 

  32. Lipski J, McAllen RM, Sayer KM (1977) The carotid chemoreceptor input to the respiratory neurons of the nucleus of tractus solitarius. J Physiol 269:797–810

    PubMed  CAS  Google Scholar 

  33. Marshall JM (1986) The role of the glycine sensitive area of the ventral medulla in cardiovascular responses to carotid chemoreceptor and peripheral nerve stimulation. Pflugers Arch 406:225–231

    PubMed  Article  CAS  Google Scholar 

  34. Marshall JM (1987) Analysis of cardiovascular responses evoked following changes in peripheral chemoreceptor activity in the rat. J Physiol 394:393–414

    PubMed  CAS  Google Scholar 

  35. Raby WN, Renaud LP (1989) Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurons through different pathways. J Physiol 417:279–294

    PubMed  CAS  Google Scholar 

  36. Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1984a) Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing Cl adrenaline neurons. J Comp Neurol 228:168–185

    Article  CAS  Google Scholar 

  37. Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ (1984b) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing Cl adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494

    CAS  Google Scholar 

  38. Somogyi P, Minson JB, Morilak D, Llewellyn-Smith I, McIlhinney JRA, Chalmers J (1989) Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control. Brain Res 496:401–407

    PubMed  Article  CAS  Google Scholar 

  39. Stone TW, Connick JH (1985) Ouinolinic acid and other kynurenines in the central nervous system. Neuroscience 15:597–618

    PubMed  Article  Google Scholar 

  40. Sun M-K, Hackett JT, Guyenet PG (1988) Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res 438:23–40

    PubMed  Article  CAS  Google Scholar 

  41. Sved AF, Blessing WW, Reis DJ (1985) Caudal ventrolateral medulla can alter vasopressin and arterial pressure. Brain Res Bull 14: 227–232

    PubMed  Article  CAS  Google Scholar 

  42. Takayama K, Miura M (1992) Difference in distribution of glutamate-immunoreactive neurons projecting into the subretrofacial nucleus in the rostra] ventrolateral medulla of SHR and WKY. a double-labeling study. Brain Res 570:259–266

    PubMed  Article  CAS  Google Scholar 

  43. Timms RJ (1981) A study of the amygdaloid defence reaction showing the value of Althesin anaesthesia in studies of the function of the fore-brain in cats. Pflugers Arch 391:49–56

    PubMed  Article  CAS  Google Scholar 

  44. Tucker DC, Saper CB, Ruggiero DA, Reis DJ (1987) Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 259:519–603

    Article  Google Scholar 

  45. Urbanski RW, Sapru HN (1988) Putative neurotransmitters involved in medullary cardiovascular regulation. J Anton Nerv Syst 25: 181–193

    Article  CAS  Google Scholar 

  46. Willette RN, Barcas PP, Krieger AJ, Sapru HN (1983) Vasopressor and depressor areas in the rat medulla. Identification by microinjection ofl-glutamate. Neuropharmacology 22:1071–1079

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Correspondence to: T. Kubo at the above address

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amano, M., Asari, T. & Kubo, T. Excitatory amino acid receptors in the rostral ventrolateral medulla mediate hypertension induced by carotid body chemoreceptor stimulation. Naunyn-Schmiedeberg's Arch. Pharmacol. 349, 549–554 (1994). https://doi.org/10.1007/BF01258457

Download citation

Key words

  • Kynurenate
  • Excitatory amino acid receptor
  • Vasopressin
  • Chemoreceptor
  • Vasopressin antagonist
  • Rostral ventrolateral medulla
  • Carotid body
  • Rat