Skip to main content

The morphology of human neuroblastoma cell grafts in the kainic acid-lesioned basal ganglia of the rat

Summary

Cells from a human neuroblastoma cell line (SH-SY5Y) have been used to examine their potential suitability as donor cells for neural transplantation. Grafts of SH-SY5Y cells were placed in the basal ganglia of the rat brain 7 days after kainic acid lesions of the striatum. The animals were killed 4 or 8 weeks following grafting, and light and electron microscopic studies showed that the graft formed a well-vascularized compact mass of cells in the host brain. At both time-points grafted cells showed evidence of cellular differentiation with process formation, especially at the graft-host interface where there was intermingling of graft and host neuronal process. Electron microscopic studies showed that graft cell processes containing irregularlyshaped, clear vesicles or membrane-bound dense core vesicles, established regions of specialized contact with other graft cells and formed close associations with host neuronal processes. There was little difference between the grafts of different ages, except that in the older grafts there were early signs of neurodegeneration. Since the SH-SY5Y cells used in these grafts express the enzyme tyrosine hydroxylase and synthesize dopaminein vitro, these cells were used in the hope that they may potentially be useful for repairing lesions in the dopamine pathway, such as that seen in Parkinson's disease. Our behavioural studies show that grafting SH-SY5Y cells into the striatum of rats with 6-hydroxydopamine lesions of the median forebrain bundle result in a reduction of amphetamine-induced rotation. However, this was unlikely to be due to dopamine release since there was no tyrosine hydroxylase immunoreactivity seen in the region of the grafts. Thus grafted human neuroblastoma cells survive, establish specialized morphological associations with graft and host processes and improve behavioural deficits resulting from 6-hydroxydopamine lesions. We suggest that grafted differentiated human neuroblastoma cells can interact with cells in the host brain with beneficial effects, and that in the medium-term, neuroblastoma grafts will make useful models for examining graft-host interactions. However, the presence of early degenerative changes in the older grafts suggests that neuroblastoma cells may not be suitable for long-term neural transplantation therapy for neurodegenerative diseases.

This is a preview of subscription content, access via your institution.

References

  • Aldes, L. D. &Boone, T. B. (1984) A combined flatembedding, HRP histochemical method for correlative light and electron microscopic study of single neurons.Journal of Neuroscience 11, 27–34.

    Google Scholar 

  • Biedler, J. L., Henson, L. &Spengler, B. A. (1973) Morphology and growth, tumorigenicity and cytogenetics of human neuroblastoma cells in continuous cell culture.Cancer Research 33, 2643–52.

    PubMed  Google Scholar 

  • Biedler, J. L., Roffler-Tarlov, S., Schachner, M. &Freedman, L. S. (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones.Cancer Research 38, 3751–7.

    PubMed  Google Scholar 

  • Björklund, A. (1993) Better cells for brain repair.Nature 362, 414–15.

    PubMed  Google Scholar 

  • Björklund, A. &Stenevi, U. (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants.Brain Research 177, 555–60.

    PubMed  Google Scholar 

  • Björklund, A., Stenevi, U., Dunnett, S. B. &Iversen, S. D. (1981) Functional reactivation of the deafferented neostriatum by nigral transplants.Nature 289, 497–9.

    PubMed  Google Scholar 

  • Deckel, A. W., Robinson, R. G., Coyle, J. T. &Sanberg, P. R. (1983) Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington's disease by day 18 fetal striatal implants.European Journal of Pharmacology 93, 287–8.

    PubMed  Google Scholar 

  • Dekker, A. J., Winkler, J., Ray, J., Thal, L. J. &Gage F. H. (1994) Grafting of nerve growth factor-producing fibroblasts reduces behavioural deficits in rats with lesions of the nucleus basalis magnocellularis.Neuroscience 60, 299–309.

    PubMed  Google Scholar 

  • Fine, A. (1990) Transplantation of adrenal tissue into the central nervous system.Brain Research Reviews 15, 121–33.

    PubMed  Google Scholar 

  • Fisher, L. J. &Gage, F. H. (1993) Grafting in mammalian central nervous system.Physiological Reviews 73, 583–616.

    PubMed  Google Scholar 

  • Fisher, L. J., Jinnah, H. A., Kale, L. C., Higgins, G. A. &Gage, F. H. (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to producel-Dopa.Neuron 6, 371–80.

    PubMed  Google Scholar 

  • Freed, W. J., Patel-Vaidya, U. &Geller, H. M. (1986) Properties of PC12 pheochromocytoma cells transplanted to the adult rat brain.Experimental Brain Research 63, 557–66.

    Google Scholar 

  • Freed, W. J., Perlow, M. J., Karoum, F., Seiger, A., Olson, L., Hoffer, B. J. &Wyatt, R. J. (1980) Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical and histochemical studies.Annals of Neurology 8, 510–19.

    PubMed  Google Scholar 

  • Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J.-X., Lone, T., Zhang, Y., Snyder, J. A., Wells, T. H., Ramig, L. O., Thompson, L., Mazziotta, J. C., Huang, S. C., Grafton, S. T., Brooks, D., Sawle, G., Schrofter, G. &Ansari, A. A. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12–46 months after transplantation for Parkinson's disease.New England Journal of Medicine 327, 1549–55.

    PubMed  Google Scholar 

  • Gage, F. H., Wolff, J. A., Rosenberg, M. B., Xu, L., Yee, J. K., Shults, C. &Friedman, T. (1987) Grafting genetically modified cells to the brain — possibilities for the future.Neuroscience 23, 795–807.

    PubMed  Google Scholar 

  • Garry, D. J., Caplan, A. L., Vawter, D. E. &Kearney, W. (1992) Are there really alternatives to the use of fetal tissue from elective abortions in transplantation research?New England Journal of Medicine 327, 1592–5.

    PubMed  Google Scholar 

  • Gash, D. M., Notter, M. F. D., Okawara, S. H., Krauss, A. L. &Joynt, R. J. (1986) Amitotic neuroblastoma cells used for neural transplants in monkeys.Science 223, 1420–2.

    Google Scholar 

  • Groves, A. K., Barnett, S. C., Franklin, R. J. M., Crang, A. J., Mayer, M., Blakemore, W. F. &Noble, M. (1993) Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells.Nature 362, 453–5.

    PubMed  Google Scholar 

  • Gupta, M., Notter, M. F. D., Felten, S. &Gash, D. M. (1985) Differentiation characteristics and human neuroblastoma cells in the presence of growth modulation and antimitotic drugs.Developmental Brain Research 19, 21–9.

    Google Scholar 

  • Hefti, F., Hartikka, J. &Schlump, M. (1985) Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigrostriatal neurons.Brain Research 348, 283–8.

    PubMed  Google Scholar 

  • Hoffer, B. J. &Olsen, L. (1991) Ethical issues in brain-cell transplantation.Trends in Neurosciences 14, 384–8.

    PubMed  Google Scholar 

  • Horellou, P., Brundin, P., Kalen, Mallet, J. &Björklund, A. (1990a)In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum.Neuron 5, 393–402.

    PubMed  Google Scholar 

  • Horellou, P., Marlier, L., Privat, A. &Mallet, J. (1990b) Behavioral effect of engineered cells that synthesize L-dopa or dopamine after grafting into the rat neostriatum.European Journal of Neuroscience 2, 116–19.

    PubMed  Google Scholar 

  • Horellou, P., Brundin, P., Kalen, P., Mallet, J. &Björklund, A. (1991) Grafts of genetically engineered cells with a recombinant retrovirus encoding human tyrosine hydroxylase: behavioral effects andin vivo release of dopa and dopamine in a rat model of Parkinson's disease. InIntracerebral Transplantation in Movement Disorders (edited byLindvall, O., Björklund, A. &Widner, H.) pp. 259–75. Amsterdam: Elsevier.

    Google Scholar 

  • Ino, M., Cole, G. M. &Timiras, P. S. (1986) Tyrosine hydroxylase and monoamine oxidase-A activity increases in differentiating human neuroblastoma after elimination of dividing cells.Developmental Brain Research 30, 120–3.

    Google Scholar 

  • Isacson, O., Dunnett, S. B. &Björklund, A. (1986) Graft-induced behavioural recovery in an animal model of Huntingdon's disease.Proceedings of the National Academy of Sciences (USA) 83, 2728–32.

    Google Scholar 

  • Isacson, O., Brundin, P., Kelly, P. A., Gage, F. H. &Björklund, A. (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum.Nature 311, 458–60.

    PubMed  Google Scholar 

  • Jaeger, C. B. (1985) Immunocytochemical study of PC12 cells grafted to the brain of immature rats.Experimental Brain Research 59, 615–24.

    Google Scholar 

  • Jalava, A., Heikkila, J., Lintunen, M., Akerman, K. &Påhlman, S. (1992) Staurosporine induces a neuronal phenotype in SH-SY5Y human neuroblastoma cells that resembles that induced by the phorbol ester 12-O-tetradecanoyl phorbol-13 acetate (TPA).FEBS Letters 300, 114–18.

    PubMed  Google Scholar 

  • Jiao, S., Gurevich, V. &Wolf, J. A. (1993) Long-term correction of rat model of Parkinson's disease by gene therapy.Nature 362, 450–3.

    PubMed  Google Scholar 

  • Kassirer, J. P. &Angell, M. (1992) The use of fetal tissue in research on Parkinson's disease.New England Journal of Medicine 327, 1591–2.

    PubMed  Google Scholar 

  • Kordower, J. H., Notter, M. F. D. &Cash, D. M. (1987a) Neuroblastoma cells in neural transplants: a neuroanatomical and behavioural analysis.Brain Research 417, 85–98.

    PubMed  Google Scholar 

  • Kordower, J. H., Notter, M. F. D., Yeh, H. H. &Gash, D. M. (1987b) Anin vivo andin vitro assessment of differentiated neuroblastoma cells as a donor source for transplantation.Annals of the New York Academy of Sciences 495, 606–22.

    PubMed  Google Scholar 

  • Lambert, D. G., Whitham, E. M., Baird, J. G. &Nahorski, S. R. (1990) Different mechanisms of Ca2+entry induced by depolarization and muscarinic receptor stimulation in SH-SY5Y human neuroblastoma cells.Molecular Brain Research 8, 263–6.

    PubMed  Google Scholar 

  • Leli, U., Shea, T. B., Cataldo, A., Hauser, G., Grynspan, F., Beermann, M. L., Liepkalns, V. A., Nixon, R. A. &Parker, P. J. (1993) Differential expression and subcellular localisation of protein kinase C a, b, g, d and e isoforms in SH-SY5Y neuroblastoma cells: modifications during differentiation.Journal of Neurochemistry 60, 289–98.

    PubMed  Google Scholar 

  • Lindvall, O. (1989) Transplantation into the human brain: present status and future possibilities.Journal of Neurology, Neurosurgery and Psychiatry 491 (Supplement), 39–54.

    Google Scholar 

  • Lo Presti, P., Poluha, W., Poluha, D. K., Drinkwater, E. &Ross, A. H. (1992) Neuronal differentiation triggered by blocking cell proliferation.Cell Growth and Differentiation 3, 627–35.

    PubMed  Google Scholar 

  • Madrazo, I., Franco-Bourland, R., Aguilera, M., Ostrosky-Solis, F., Cuevas, C., Castrejon, H., Magallon, E. &Mardrazo, M. (1991) Development of human neural transplantation.Neurosurgery 29, 165–77.

    PubMed  Google Scholar 

  • Mctigue, N., Cremins, J. &Halegoua, S. (1985) Nerve growth factor and other agents mediate phosphorylation and activation of tyrosine hydroxylase.Journal of Biological Chemistry 260, 9047–56.

    PubMed  Google Scholar 

  • Mena, M. A., De Yebenes, J. G., Dwork, A., Fahn, S., Latov, N., Herbert, J., Flaster, E. &Slonim, D. (1989) Biochemical properties of monoamine-rich human neuroblastoma cells.Brain Research 486, 286–96.

    PubMed  Google Scholar 

  • Morton, A. J., Hammond, C., Mason, W. T. &Henderson, G. (1992) Characterisation of the L- and N-type calcium channels in differentiated SH-SY5Y neuroblastoma cells: calcium imaging and single channel recording.Molecular Brain Research,13, 53–61.

    PubMed  Google Scholar 

  • Påhlman, S., Ruusala, A., Abrahamsson, L., Mattsson, M. E. K. &Esscher, T. (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation.Cell Differentiation 14, 135–44.

    PubMed  Google Scholar 

  • Pearlman, S., Levivier, M. &Gash, D. M. (1993) Striatal implants of fetal striatum or gelfoam protect against quinolinic acid lesions of the striatum.Brain Research,613, 203–11.

    PubMed  Google Scholar 

  • Pellegrino, L. J. &Cushman, A. J. (1967)A stereotaxic atlas of the rat brain. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Przedborski, S., Levivier, M., Kostic, V., Jackson-Lewis, V., Dollison, A., Gash, D. M., Fahn, S. &Cadet, J. L. (1991) Sham transplantation protects against 6-hydroxydopamine-induced dopaminergic toxicity in rats: behavioral and morphological evidence.Brain Research 550, 231–8.

    PubMed  Google Scholar 

  • Schallert, T. &Jones, T. A. (1993) ‘Exuberant’ neuronal growth after brain damage in adult rats: the essential role of behavioral experience.Journal of Neural Transplantation and Plasticity 4, 193–8.

    PubMed  Google Scholar 

  • Spencer, D. D., Robbins, R. J., Naftolin, F., Marek, K. L., Vollmer, T., Leranth, C., Roth, R. H., Price, L. H., Gjedde, A., Bunney, B. S., Sass, K. J., Elsworth, J. D., Kier, L., Makuch, R., Hoffer, P. B. &Redmond, D. E. (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease.New England Journal of Medicine 327, 1541–8.

    PubMed  Google Scholar 

  • Strauss, S., Otten, U., Joggerst, B., Pluss, K. &Volk, B. (1994) Increased levels of nerve growth-factor (NGF) protein and messenger-RNA and reactive gliosis following kainic acid injection into the rat striatum.Neuroscience Letters 168, 193–6.

    PubMed  Google Scholar 

  • Tuszynski, M. H., Peterson, D. A., Ray, J., Baird, A., Nakahara, Y. &Gage, F. H. (1994) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord.Experimental Neurology 126, 1–14.

    PubMed  Google Scholar 

  • Uchida, K., Takamatsu, K., Kaneda, N., Toya, S., Tsukada, Y., Kurosawa, Y., Fujita, K., Nagatsu, T. &Kohsaka, S. (1989) Synthesis of L-3,4-dihydroxyphenylalamine by tyrosine hydroxylase cDNA-transfected C6 cells: application for intracerebral grafting.Journal of Neurochemistry 53, 728–32.

    PubMed  Google Scholar 

  • Ungerstedt, U. &Arbuthnott, G. W. (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system.Brain Research 24, 485–93.

    PubMed  Google Scholar 

  • Widner, H., Tetrud, J., Rehngrona, S., Snow, B., Brundin, P., Gustavii, B., Björklund, A., Lindvall, O. &Langston, J. W. (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP).New England Journal of Medicine 327, 1556–63.

    PubMed  Google Scholar 

  • Wojcik, B. E., Nothias, F., Lazar, M., Jouin, H., Nicolas, J.-F. &Peschanski, M. (1993) Catecholamine neurons result from intracerebral implantation of embryonic carcinoma cells.Proceedings of the National Academy of Sciences (USA) 90, 1305–9.

    Google Scholar 

  • Zabek, M., Mazurowski, W., Dymecki, J., Stelmachow, J. &Zawada, E. (1994) A long term follow-up of fetal dopaminergic transplantation into the brains of three parkinsonian patients.Restorative Neurology and Neuroscience 6, 97–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morton, A.J., Williams, M.N., Emson, P.C. et al. The morphology of human neuroblastoma cell grafts in the kainic acid-lesioned basal ganglia of the rat. J Neurocytol 24, 568–584 (1995). https://doi.org/10.1007/BF01257373

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257373

Keywords

  • Tyrosine Hydroxylase
  • Kainic Acid
  • Human Neuroblastoma Cell
  • Median Forebrain Bundle
  • Dense Core Vesicle