Skip to main content
Log in

Differentiation of Cl/Ca2+-dependent and sodium dependent3H-glutamate binding to cortical membranes from rat brain by high energy radiation inactivation analysis

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The molecular weights of3H-L-glutamate binding in the presence of chloride and calcium ions and in the presence of sodium ions were determined by the high energy irradiation technique.

The molecular weight of sodium dependent3H-L-glutamate binding, which has pharmacological specificities similar to the high-affinity uptake system for L-glutamate, was 670,000 daltons.

The high-energy radiation inactivation study of chloride and calcium dependent and sodium independent3H-L-glutamate binding is consonant with the idea that, this binding represent glutamate transport into resealed plasma membrane vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcar, V. J., Johnston, G. A. R.: Structural specificity of high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J. Neurochem.19, 2657–2666 (1972).

    PubMed  Google Scholar 

  • Baudry, M., Lynch, G.: Characterization of two [3H] glutamate binding sites in rat hippocampal membranes. J. Neurochem.36, 811–820 (1981).

    PubMed  Google Scholar 

  • Fagg, G. E., Foster, A. C., Mena, E. E., Cotman, C. W.: Chloride and calcium ions reveal a pharmacologically-distinct population of L-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data. J. Neurosci.2, 958–965 (1982).

    PubMed  Google Scholar 

  • Fagg, G. E., Foster, A. C., Mena, E. E., Cotman, C. W.: Chloride and calcium ions separate L-glutamate receptor populations in synaptic membranes. Europ. J. Pharmacol.88, 105–110 (1983 a).

    Google Scholar 

  • Fagg, G. E., Mena, E. E., Monaghan, D. T., Cotman, C. W.: Freezing eliminates a specific population of L-glutamate receptors in synaptic membranes. Neurosci. Lett.38, 157–162 (1983 b).

    PubMed  Google Scholar 

  • Fagg, G. E., Matus, A.: Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Proc. Natl. Acad. Sci. U.S.A.81, 6876–6880 (1984).

    PubMed  Google Scholar 

  • Foster, A. C., Fagg, G. E.: Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res. Rev.7, 103–164 (1984).

    Google Scholar 

  • Honoré, T., Lauridsen, J.: Structural analogues of ibotenic acid. Synthesis of 4-methyl-homoibotenic acid and AMPA, including the crystal structure of AMPA monohydrate, Acta Chem. Scand.B 34, 235–240 (1980).

    Google Scholar 

  • Honoré, T., Nielsen, M.: Complex structure of quisqualate-sensitive glutamate receptors in rat cortex. Neurosci. Lett.54, 27–32 (1985).

    PubMed  Google Scholar 

  • Jung, C. Y.: Molecular weight determination by radiation inactivation. In: Molecular and Chemical Characterization of Membrane Receptors (Venter, J. C., Harrison, L. C., eds.), pp. 193–208. New York: Alan R. Liss. 1984.

    Google Scholar 

  • Kepner, G. R., Macey, R. I.: Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim. Biophys. Acta163, 188–203 (1968).

    PubMed  Google Scholar 

  • Koerner J. F., Cotman, C. W.: L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res.216, 192–198 (1981).

    PubMed  Google Scholar 

  • Kuhar, M. J., Zarbin, M. A.: Synaptosomal transport: a chloride dependence for choline, GABA, glycine and several other compounds. J. Neurochem.31, 251–256 (1978).

    PubMed  Google Scholar 

  • Marvinzon, J. G., Mayor, F., Aragon, M. C., Gimenez, C., Valdivieso, F.: L-Aspartate transport into plasma membrane vesicles derived from rat brain synaptosomes. J. Neurochem.37, 1401–1406 (1981).

    PubMed  Google Scholar 

  • Mena, E. E., Fagg, G. E., Cotman, C. W.: Chloride ions enhance L-glutamate binding to rat brain synaptic membranes. Brain Res.243, 378–381 (1982).

    PubMed  Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., Stormann, T. M., Chittenden, W. L., Grubbs, R. D.: Purification and molecular characterization of the brain synaptic membrane glutamate-binding protein. J. Neurochem.40, 1742–1753 (1983).

    PubMed  Google Scholar 

  • Nielsen, M., Honoré, T., Braestrup, C.: Enhanced binding of the convulsive ligand, DMCM, to high-energy irradiated benzodiazepine receptors; evidence of complex receptor structure. Biochem. Pharmacol.32, 177–180 (1983).

    PubMed  Google Scholar 

  • Nielsen, M., Braestrup, C.: The molecular target size of brain TBPS binding sites. Europ. J. Pharmacol.96, 321–322 (1983).

    Google Scholar 

  • Nielsen, M., Honoré, T., Braestrup, C.: Radiation inactivation of brain35S-TBPS binding sites reveals complicated molecular arrangements of the GABA/benzodiazepine receptor chloride channel complex. Biochem. Pharmacol.34, 3633–3642 (1985).

    PubMed  Google Scholar 

  • Pin, J.-P., Bockaert, J., Recasens, M.: The Ca2+/Cl-dependent Ca2+/Cl-dependent L-[3H] glutamate binding: A new receptor or a particular transport process? FEBS Lett.175, 31–36 (1984).

    PubMed  Google Scholar 

  • Schlegel, W.: Structure-function relationships for hormone receptors and adenyl cyclase: the contribution of target size analysis. J. Receptor Res.3, 399–357 (1983).

    Google Scholar 

  • Sharif, N. A., Roberts, P. J.: Problems associated with the binding of L-glutamic acid to synaptic membranes: Methodological aspects. J. Neurochem.34, 779–784 (1980).

    PubMed  Google Scholar 

  • Slevin, J., Collins, J. F., Lindsley, K., Coyle, J. T.: Specific binding of [3H]glutamate to cerebellar membranes: evidence for recognition site heterogeneity. Brain Res.249, 353–360 (1982).

    PubMed  Google Scholar 

  • Usherwood, P. N. R., Cull-Candy, S. G.: Distribution of glutamate sensitivity on insect muscle fibres. Neuropharmacology13, 455–461 (1974).

    PubMed  Google Scholar 

  • Vincent, S. R., McGeer, E. G.: A comparison of sodium-dependent glutamate binding with high-affinity glutamate uptake in rat striatum. Brain Res.184, 99–108 (1980).

    PubMed  Google Scholar 

  • Werling, L. L., Nadler, J. V.: Complex binding of L-[3H]glutamate to hippocampal synaptic membranes in the absence of sodium. J. Neurochem.38, 1050–1062 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honoré, T., Drejer, J., Nielsen, M. et al. Differentiation of Cl/Ca2+-dependent and sodium dependent3H-glutamate binding to cortical membranes from rat brain by high energy radiation inactivation analysis. J. Neural Transmission 65, 93–101 (1986). https://doi.org/10.1007/BF01256485

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01256485

Key words

Navigation