Advertisement

Radiation and Environmental Biophysics

, Volume 33, Issue 1, pp 69–79 | Cite as

Osteosarcomagenic doses of radium (224Ra) and infectious endogenous retroviruses enhance proliferation and osteogenic differentiation of skeletal tissue differentiating in vitro

  • Jörg Schmidt
  • Kathrin Heermeier
  • Utz Linzner
  • Arne Luz
  • Michael Silbermann
  • Erella Livne
  • Volker Erfle
Article

Abstract

Cartilage tissue from embryonic mice which undergoes osteogenic differentiation during in vitro cultivation was used to study the effect of osteosarcomagenic doses of α-irradiation and bone-tumor-inducing retroviruses on proliferation and phenotypic differentiation of skeletal cells in a defined tissue culture model. Irradiated mandibular condyles showed dose-dependent enhancement of cell proliferation at day 7 of the culture and increased osteogenic differentiation at day 14. Maximal effects were found with 7.4 Bq/ml of224Ra-labeled medium. Doses of 740 and 7400 Bq/ml of224Ra-labeled medium induced increasing cell death. Retrovirus infection enhanced osteogenic differentiation and extended the viability of irradiated cells. After transplantation none of the treated tissues developed tumors in syngeneic mice.

Keywords

Cell Death Cell Proliferation Radium Tissue Culture Environmental Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronow MA, Gerstenfeld LC, Owen TA, Tassinari MS, Stein GS, Lian J (1990) Factors that promote progressive development of the osteoblastic phenotype in cultured fetal rat calvarial cells. J Cell Physiol 143:213–221Google Scholar
  2. 2.
    Aubin JE, Tetinegg I, Ber R, Heersche JNM (1988) Consistent pattern of changing hormone responsiveness during continuous culture of cloned rat calvaria cells. J Bone Miner Res 3:333–339Google Scholar
  3. 3.
    Bettega D, Calzolari P, Chiorda GN, Tallone-Lombardi L (1992) Transformation of C3H10T1/2 cells with 4.3 MeV alpha particles at low doses: effects of single and fractionated doses. Radiat Res 131:66–71Google Scholar
  4. 4.
    Closs EI, Murray AB, Schmidt J, Schön A, Erfle V, Strauss PG (1990) C-fos expression precedes osteogenic differentiation of cartilage cells in vitro. J Cell Biol 111:1313–1323Google Scholar
  5. 5.
    Cornforth MN, Goodwin EH (1991) The dose-dependent fragmentation of chromatin in human fibroblasts by 3.5 MeV alpha particles from 238 plutonium: experimental and theoretical consideration pertaining to single track effects. Radiat Res 127:64–74Google Scholar
  6. 6.
    Crawford-Brown DJ, Hofmann W (1990) A generalized state-vector model for radiation-induced cellular transformation. Int J Radiat Biol 57:407–423Google Scholar
  7. 7.
    Erfle V, Schmidt J, Strauss PG, Hehlmann R, Luz A (1986) Activation and biological properties of endogenous retroviruses in radiation osteosarcomagenesis. Leukemia Res 10:905–913Google Scholar
  8. 8.
    Finkel MP, Reilly CA, Biskis BO, Greco IL (1973) Bone tumor viruses. In: Price CHG, Ross FGM (eds) Bone-certain aspects of neoplasia. Butterworths, London, pp 353–364Google Scholar
  9. 9.
    Finkel MP, Reilly CA, Biskis BO (1975) Viral etiology of bone cancer. Front Radiat Ther Oncol 10:28–39Google Scholar
  10. 10.
    Gössner W, Hug O, Luz A, Müller WA (1976) Experimental induction of bone cancer by short-lived radionuclides. Recent Results Cancer Res 54:36–49Google Scholar
  11. 11.
    Herrlich P, Ponta H, Rahmsdorf HJ (1992) DNA damage-induced gene expression: signal transduction and relation to growth factor signaling. Rev Physiol Biochem Pharmacol 119:187–223Google Scholar
  12. 12.
    Hieber L, Ponsel G, Roos H, Fenn S, Fromke E, Kellerer AM (1987) Absence of a dose-rate effect in the transformation of C3H10T1/2 cells by alpha particles. Int J Radiat Biol 52:859–869Google Scholar
  13. 13.
    Kirschmeier P, Gattoni-Celli S, Dina D, Weinstein B (1982) Carcinogen and radiation-transformed C3H10T1/2 cells contain RNAs homologous to the long terminal repeat sequence of a marine leukemia virus. Proc Natl Acad Sci USA 79:2773–2777Google Scholar
  14. 14.
    Krolewski B, Little JB (1989) Molecular analysis of DNA isolated from the different stages of X-ray-induced transformation in vitro. Mol Carcinog 2:27–33Google Scholar
  15. 15.
    Livne E, Schmidt J, Closs EI, Silbermann M, Erfle V (1989) Effects of leukemogenic retroviruses on condylar cartilage in vitro: an ultrastructural study. Calcif Tissue Int 44:25–35Google Scholar
  16. 16.
    Lloyd EL, Gemmell MA, Henning CB, Gemmell DS, Zabransky BJ (1979) Transformation of mammalian cells by alpha particles. Int J Radiat Biol 36:467–478Google Scholar
  17. 17.
    Lowy DR, Rands E, Chattopadhyay SK, Garon C, Hager GL (1980) Molecular cloning of infectious integrated murine leukemia virus DNA from infected mouse cells. Proc Natl Acad Sci USA 77:614–618Google Scholar
  18. 18.
    Martland HS, Humphries RE (1929) Osteogenic sarcoma in dial painters using luminous paint. Arch Pathol 7:406–417Google Scholar
  19. 19.
    Mays CW (1973) Cancer induction in man from internal radioactivity. Health Phys 25:585–592Google Scholar
  20. 20.
    Mays CW, Spiess H (1978) Bone sarcoma to man from224Ra,226Ra, and219Pu. In: Miller WA, Evert HG (eds) Biological effects of224Ra. Martinus Nijhoff, The Hague, pp 168–181Google Scholar
  21. 21.
    Müller WA, Gössner W, Hug O, Luz A (1978) Late effects after incorporation of the short-lived alpha emitters224Ra and227Th in mice. Health Phys 35:33–55Google Scholar
  22. 22.
    Panozzo J, Bertoncini D, Miller D, Libertin CR, Woloschak GE (1991) Modulation of expression of virus-like elements following exposure of mice to high and low-LET radiations. Carcinogenesis 12:801–804Google Scholar
  23. 23.
    Pedersen FS, Haseltine WA (1980) Analysis of the genome of an endogenous, ecotropic retrovirus of the AKR strain of mice: micromethod for detailed characterization of high-molecular-weight RNA. J Virol 33:349–365Google Scholar
  24. 24.
    Robertson JB, Koehler AS, George J, Little JB (1983) Oncogenic transformation of mouse BALB-3T3 cells by plutonium-238 alpha particles. Radiat Res 96:261–274Google Scholar
  25. 25.
    Rodan GA, Rodan SB (1984) Expression of the osteoblastic phenotype. In: Peck WA (ed) Bone and mineral research. Elsevier, Amsterdam, pp 224–285Google Scholar
  26. 26.
    Sawey MJ, Hood AT, Burns FJ, Garte SJ (1987) Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation. Mol Cell Biol 7:932–935Google Scholar
  27. 27.
    Schmidt J, Erfle V, Schetters H, Muller WA (1984) Low dose alpha irradiation: response of mouse embryo fibroblast cells “in vitro”. Extended synopses of the IAEA Symposium, 11.–15. 4. 1984, IAEA-SM/266-16P:169–171Google Scholar
  28. 28.
    Schmidt J, Erfle V, Pedersen FS, Rohmer H, Schetters H, Marquart K-H, Luz A (1984) Oncogenic retrovirus from spontaneous osteomas. I. Isolation and biological characterization. J Gen Virol 65:2237–2248Google Scholar
  29. 29.
    Schmidt J, Erfle V, Muller WA (1985) Activation of endogenous C-type retroviral genomes by internal alpha-irradiation of mice with224radium. Radiat Environ Biophys 24:17–22Google Scholar
  30. 30.
    Schmidt J, Livne E, Erfle V, Gössner W, Silbermann M (1986) Morphology and in vivo growth characteristics of an atypical murine proliferative osseous lesion induced in vitro. Cancer Res 46:3090–3098Google Scholar
  31. 31.
    Schmidt J, Casser-Bette M, Murray AB, Luz A, Erfle V (1987) Retrovirus-induced osteopetrosis in mice. Effects of viral infection on osteogenic differentiation in skeletoblast cell cultures. Am J Pathol 129:503–510Google Scholar
  32. 32.
    Schmidt J, Luz A, Erfle V (1988) Endogenous C-type retroviruses: frequency of radiation-activation and novel pathogenic effects of viral isolates. Leukemia Res 12:393–403Google Scholar
  33. 33.
    Schmidt J, Closs EI, Livne E, Erfle V, Silbermann M (1989) Biochemical characterization of virus-induced osteosarcoma-like osseous lesion in vitro. Calcif Tissue Int 45:232–242Google Scholar
  34. 34.
    Scheeters GE, van der Plaetse F, van den Heuvel RL (1992) High radiosensitivity of the mineralization capacity of adult murine bone marrow in vitro to continuous alpha irradiation compared to acute X-irradiation. Int J Radiat Biol 61:675–683Google Scholar
  35. 35.
    Silbermann M, Frommer J (1972) Electron microscopy of the secondary cartilage in mandibular condyle in the mouse. Anat Rec 172:659–668Google Scholar
  36. 36.
    Silbermann M, Lewinson D, Gonen H, Lizarbe MA, von der Mark K (1983) In vitro transformation of chondroprogenitor cells into osteoblasts and the formation of new membrane bone. Anat Rec 206:373–383Google Scholar
  37. 37.
    Strauss PG, Schmidt J, Pedersen L, Erfle V (1988) Amplification of endogenous proviral MuLV sequences in radiation-induced osteosarcomas. Int J Cancer 41:616–621Google Scholar
  38. 38.
    Strauss PG, Closs EI, Schmidt J, Erfle V (1990) Osteogenic differentiation of cartilage cells in vitro. J Cell Biol 110:1369–1378Google Scholar
  39. 39.
    Strauss PG, Muller K, Zitzelsberger H, Luz A, Schmidt J, Erfle V, Höfler H (1991) Elevated p53 RNA expression correlates with incomplete osteogenic differentiation of radiation-induced murine osteosarcomas. Int J Cancer 50:252–259Google Scholar
  40. 40.
    Sturm S, Strauss PG, Adolph S, Hameister H, Erfle V (1990) Amplification and rearrangements of c-myc in radiation-induced osteosarcomas. Cancer Res 50:4146–4153Google Scholar
  41. 41.
    Sykes CE, Watt DE (1989) Interpretation of the increase in the frequency of neoplastic transformation observed for some ionizing radiations at low dose rates. Int J Radiat Biol 55:925–942Google Scholar
  42. 42.
    Thomassen DG, Seiler FA, Shyr LJ, Griffith WC (1990) Alpha particles induce praeneoplastic transformation of rat tracheal epithelial cells in culture. Int J Radiat Biol 57:395–405Google Scholar
  43. 43.
    Woloschak G, Chang-Liu C (1990) Differential modulation of specific gene expression following high- and low-LET radiation. Rad Res 124:183–187Google Scholar
  44. 44.
    van den Berg S, Rahmsdorf HJ, Herrlich P, Kaina B (1993) Overexpression of c-fos increases recombination frequency in human osteosarcoma cells. Carcinogenesis 14:925–928Google Scholar
  45. 45.
    Vaughn JJ (ed) (1973) The effects of irradiation on the skeleton. Clarendon Press, OxfordGoogle Scholar
  46. 46.
    Yoshioka C, Yagi T (1988) Electron microscopic observations on the fate of hypertrophic chondrocytes in condylar cartilage of rat mandible. J Craniofac Genet Dev Biol 8:253–264Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Jörg Schmidt
    • 1
  • Kathrin Heermeier
    • 1
  • Utz Linzner
    • 2
  • Arne Luz
    • 2
  • Michael Silbermann
    • 3
  • Erella Livne
    • 3
  • Volker Erfle
    • 1
  1. 1.Institut für Molekulare VirologieGSF-Forschungszentrum für Umwelt und Gesundheit GmbHOberschleißheimGermany
  2. 2.Institut für PathologieGSF-Forschungszentrum für Umwelt und Gesundheit GmbHOberschleißheimGermany
  3. 3.Laboratory of Musculoskeletal ResearchThe Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, TechnionHaifaIsrael

Personalised recommendations