Skip to main content
Log in

KontraktilitÄt und Ultrastruktur glycerin-extrahierter Fibroblasten aus der Gewebekultur

Contractility and ultrastructure of glycerol-extracted fibroblasts in tissue culture

  • Published:
Protoplasma Aims and scope Submit manuscript

Zusammenfassung

Hühnerherz-Fibroblasten der Wachstumszone von Herzexplantaten 9 Tage alter Embryonen wurden 1/2 Std. 1 und 12 Tage lang glycerinextrahiert. (d-)Filamente mit einem Durchmesser von 60–80 Ä, die überall im Cytoplasma vorhanden sind, und au\erdem feinere (f-)Filamente mit einem Durchmesser von 20–30 å in der Randzone der Zellen überstehen die Extraktion. Gelegentlich sind einige d-Filamente in Subfilamente mit einem Durchmesser von 20–30 å aufgetrennt. Die durch ATP erzeugte Kontraktion bewirkt eine Abrundung der Zelle. Ein elektronendichtes Material lagert sich dabei schalenförmig um die Zelle. Dieses Material besteht aus d- und f-Filamenten wie die Randzone nicht-extrahierter Zellen. Das durch ATP erzeugte elektronendichte Material und die Randzone scheinen daher der kontrahierte Zustand und die im Cytoplasma verteilten d-Filamente der nicht-kontrahierte Zustand eines intrazellulÄren kontraktilen Systems zu sein.

Summary

Chick heart fibroblasts outgrown from heart explants of nine-day embryos were glycerol-extracted for 1/2 hour, 1 and 12 days. (d-)filaments with a diameter of 60–80 å existing everywhere in the cytoplasma and in addition finer (f-)filaments with a diameter of 20–30 å in the cortical layer of the cells withstand the extraction. Occasionally some d-filaments have divided into subfilaments with a diameter of 20–30 å. Contraction induced by ATP results in a rounding up of the fibroblast. An electron dense material is found in a shell-like arrangement around the condensed cell. This material consists of d- and f-filaments just like the cortical layer of unextracted cells. The ATP-induced electron dense material and the cortical layer are supposed to be the contracted and the d-filaments dispersed in the cytoplasma the relaxed state of an intracellular contractile system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Allen, R. D., 1961: Ameboid movement. In: The Cell, Vol. II, p. 135–216 (ed. byJ. BrÄchet andA. E. Mirsky). New York and London: Academic Press.

    Google Scholar 

  • —, andJ. D. Roslansky, 1959: The consistence of ameba cytoplasm and its bearing on the mechanism of ameboid movement. I. An analysis of endoplasmic velocity profiles ofChaos chaos (L.). J. biophys. biochem. Cytol.6, 437–446.

    PubMed  Google Scholar 

  • Ambrose, E. J., 1961: The movements of fibrocytes. Exp. Cell Res. Suppl.8, 54–73.

    Google Scholar 

  • Banga, J., andA. Szent-Györgyi, 1940: Structure proteins. Science92, 514–515.

    Google Scholar 

  • Bensley, R. R., 1942: Chemical structure of cytoplasm. Science96, 389–393.

    Google Scholar 

  • Brown, D. E., 1934: The pressure coefficient of viscosity in the eggs ofArbacia punctulata. J. cell. comp. Physiol.4, 257–265.

    Google Scholar 

  • Bruyn, de, P. P., 1947: Theories of amoeboid movement. Quart. Rev. Biol.22, 1–24.

    Google Scholar 

  • Buckley, J. K., andK. R. Porter, 1967: Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma64, 349–380.

    PubMed  Google Scholar 

  • Choi, J. K., 1962: Fine structure of the smooth muscle of the chicken's gizzard. 5th Internat. Congr. f. Electron Microscopy, Philadelphia 1962. New York: Academic Press, 2. M 9.

    Google Scholar 

  • Crick, F. H., andA. F. Hughes, 1950: The physical properties of cytoplasm. A study by means of the magnetic particle method. Part 1. Exp. Cell Res.1, 37–80.

    Google Scholar 

  • Danneel, S., undN. Weissenfels, 1965: Besseres Fixierungsverfahren zur Darstellung des Grundplasmas von Protozoen und Vertebratenzellen. Mikroskopie20, 89–93.

    PubMed  Google Scholar 

  • Frey-Wyssling, A., 1955: Die submikroskopische Struktur des Cytoplasmas. In: Protoplasmatologia, Wien: Springer-Verlag.

    Google Scholar 

  • Goldacre, R. J., 1952: The folding and unfolding of protein molecules as a basis of osmotic work. Int. Rev. Cytol.1, 135–164.

    Google Scholar 

  • Hoffmann-Berling, H., 1953: Die Wasser-Glycerin-extrahierte Zelle als Modell der ZellmotilitÄt. Biochim. biophys. Acta (Amst.)10, 628.

    Google Scholar 

  • —, 1954: Adenosintriphosphat als Betriebsstoff von Zellbewegungen. Biochim. Biophys. Acta (Amst.)14, 182–194.

    Google Scholar 

  • —, 1958: Physiologie der Bewegungen und Teilungsbewegungen tierischer Zellen. Fortschr. Zool.11, 142–207.

    Google Scholar 

  • —, 1963: Mechanismen von Zellbewegungen. Naturwissenschaften50, 256–259.

    Google Scholar 

  • Hyman, L. H., 1917: Metabolic gradients in amoeba and their relation to the mechanism of amoeboid movement. J. exp. Zool.24, 55–99.

    Google Scholar 

  • Ishikawa, H., 1968:In situ demonstration of heavy meromyosin-bound filaments in sectioned preparations. J. Cell Biol.39, 65 a.

    Google Scholar 

  • Keyserlingk, D. Graf, 1968: Elektronenmikroskopische Untersuchung über die DifferenzierungsvorgÄnge im Cytoplasma von segmentierten neutrophilen Leukozyten wÄhrend der Zellbewegung. Exp. Cell Res.51, 79–91.

    PubMed  Google Scholar 

  • — undW. Schwarz, 1968: Feinstruktur des kontraktilen Systems in Fibroblasten. Naturwissenschaften55, 549.

    Google Scholar 

  • Lane, B. P., 1965: Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J. Cell Biol.27, 199–213.

    PubMed  Google Scholar 

  • Lewis, W. H., and M. R.Lewis, 1924: Behavior of cells in tissue cultures. In: General Cytology (ed. by E. V.Cowdry). The University of Chicago Press, 385–447.

  • Marsland, D. A., 1942: Protoplasmic streaming in relation to gel structure in the cytoplasm. In: W.Seifriz: The structure of protoplasm. Monogr. Amer. Soc. Plant Physiol. Ames (Iowa State Coll. Press), 127.

  • — andD. E. Brown, 1942: The effect of pressure on sol-gel equilibria, with special reference to myosin and other protoplasmic gels. J. Cell Comp. Physiol.20, 295–305.

    Google Scholar 

  • Mast, S. O., 1926: Structure, movement, locomotion and stimulation in Amoeba. J. Morph.41, 347–425.

    Google Scholar 

  • Mitchison, J. M., 1950: Birefringence of amoebae. Nature (Lond.)166, 313–314.

    Google Scholar 

  • Obinata, T., M. Yamamoto, andK. Maruyama, 1966: The identification of randomly formed thin filaments in differentiating muscle cells of the chick embryo. Develop. Biol.14, 192–213.

    PubMed  Google Scholar 

  • Panner, B. J., andC. R. Honig, 1967: Filament ultrastructure and organization in vertebrate smooth muscle. Contraction hypothesis based on localization of actin and myosin. J. Cell Biol.35, 303–321.

    PubMed  Google Scholar 

  • Pantin, C. F., 1923: On the physiology of the amoeboid movement. J. Mar. Biol. Ass. U.K.13, 24–69.

    Google Scholar 

  • Ross, R., andE. R. Benditt, 1961: Wound healing and collagen formation. I. Sequential changes in components of guinea pig skin wounds observed in the electron microscope. J. biophys. biochem. Cytol.11, 677–700.

    PubMed  Google Scholar 

  • SchÄfer-Danneel, S., 1967: Strukturelle und funktionelle Voraussetzungen für die Bewegung vonAmoeba proteus. Z. Zellforsch.78, 441–462.

    PubMed  Google Scholar 

  • Schwarz, W., H. J. Merker undA. Kutzsche, 1962: Elektronenmikroskopische Untersuchungen über die Fibrillogenese in Fibroblastenkulturen. Z. Zellforsch.56, 107–124.

    PubMed  Google Scholar 

  • Seifriz, W., 1952: The rheological properties of protoplasm. In: Deformation and flow in biological systems (ed. byA. Frey-Wyssling). Amsterdam: C. N. Holland Publ. Co.

    Google Scholar 

  • Szent-Györgyi, A., 1947: Chemistry of muscular contraction. New York: Academic Press.

    Google Scholar 

  • —, 1949: Free energy relations and contraction of actomyosin. Biol. Bull.96, 140–161.

    Google Scholar 

  • Weissenfels, N., 1962a: Einflu\ der Gewebezüchtung auf die Morphologie der Hühnerherzmyoblasten. II. Die Herkunft und Entwicklung der Cytosomen. Protoplasma54, 328–344.

    Google Scholar 

  • —, 1962b: dito IV. über Differenzierungs- und AbbauvorgÄnge an den Muskelelementen. Protoplasma55, 99–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyserlingk, D.G. KontraktilitÄt und Ultrastruktur glycerin-extrahierter Fibroblasten aus der Gewebekultur. Protoplasma 67, 391–406 (1969). https://doi.org/10.1007/BF01254903

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254903

Navigation