Skip to main content
Log in

Parametric analysis of the accuracy of solution of a nonlinear inverse problem of recovering the thermal conductivity of a composite material

  • Published:
Journal of engineering physics Aims and scope

Abstract

The authors consider the construction of an iterative numerical algorithm and analyze the influence of the location of the temperature sensor on the accuracy of solving the inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c:

volume heat capacity

λ :

thermal conductivity

mg :

specific mass flow rate

hg :

enthalpy of the gas phase of thermal breakdown products

T:

temperature

x:

three-dimensional coordinate

τ :

time

τm :

right-hand boundary value of the time interval

fi(τ):

input temperatures

z:

concentration of the decomposable component

A:

preexponential factor

n:

order of the breakdown reaction

E/R:

activation energy

kT :

limiting value of the coke number

ρ0 :

density of the original material

Tr :

temperature at the start of thermal breakdown

b:

right-hand boundary value of the three-dimensional interval

I:

functional

ϑ :

temperature increment

ψ :

conjugate variable

i:

three-dimensional subscript

Tmin :

minimum value of temperature

Tmax :

maximum value of temperature

λmax :

maximum value of thermal conductivity

Literature cited

  1. B. M. Pankratov, Yu. V. Polezhaev, and A. K. Rud'ko, Interaction of Materials with Gas Flows [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  2. Yu. V. Polezhaev, V. E. Killikh, and Yu. G. Narozhnyi, “Unsteady heating of thermally insulating materials,” Inzh.-Fiz. Zh.,29, No. 1, 39 (1975).

    Google Scholar 

  3. E. A. Artyukhin, “Determination of thermal diffusivity from experimental data,” Inzh.-Fiz. Zh.,29, No. 1, 87 (1975).

    Google Scholar 

  4. O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, “Solution of boundary and co-efficient inverse problems by iterative methods,” in:Heat and Mass Transfer IV [in Russian], Vol. 9, ITMO Akad. Nauk BSSR (1980), p. 106.

  5. E. A. Artyukhin, “Recovery of the thermal conductivity from solution of a nonlinear in-verse problem,” Inzh.-Fiz. Zh.,41, No. 1, 587 (1981).

    Google Scholar 

  6. E. A. Artyukhin and A. S. Okhapkin, “Determination of the temperature dependence of the thermal conductivity of a composite material from the data of an unsteady experiment,” Inzh.-Fiz. Zh.,44, No. 2, 274 (1983).

    Google Scholar 

  7. S. B. Stechkin and Yu. N. Subbotin, Splines in Computational Mathematics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  8. O. M. Alifanov, Identification of Aircraft Heat Transfer Processes [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  9. E. Polak, Numerical Methods of Optimization [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  10. F. P. Vasil'ev, Methods of Solving Extremal Problems [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  11. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  12. N. V. Muzylev, “Uniqueness theorems for some inverse heat-conduction problems,” Zh. Vychisl. Mat. Mat. Fiz.,20, No. 2, 388 (1980).

    Google Scholar 

  13. O. M. Alifanov and S. V. Rumyantsev, “Stability of iterative methods of solving linear incorrectly posed problems,” Dokl. Akad. Nauk SSSR,248, No. 6, 1289 (1979).

    Google Scholar 

Download references

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 5, pp. 781–788, November, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artyukhin, E.A., Okhapkin, A.S. Parametric analysis of the accuracy of solution of a nonlinear inverse problem of recovering the thermal conductivity of a composite material. Journal of Engineering Physics 45, 1275–1281 (1983). https://doi.org/10.1007/BF01254733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254733

Keywords

Navigation