Skip to main content
Log in

Clinical renography: 25 years on

  • Occasional survey
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Renal radionuclide studies have progressed from the probe to the gamma camera and sophisticated hard- and software, yet the principles remain the same. Many of the problems were identified and the solutions proposed 25 years ago, but these solutions are still not applied in practice. This survey charts the evolution of renography during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Britton KE, Brown NJG. Clinical renography. London: Lloyd Luke, 1971.

    Google Scholar 

  2. Winter CC.Radioisotope renography. Baltimore: Williams and Williams, 1963.

    Google Scholar 

  3. Denneberg T. Critical analysis of the renogram tracing in normal subjects and in the diseased state. In: Timmermans L, Merchie G, eds.Radioisotopes in the diagnosis of diseases of the kidneys and the urinary tract. Amsterdam: Excepta Medical Foundation, ICS 178; 1969: 222–227.

    Google Scholar 

  4. Peters AM, Gordon I, Evans K, Todd-Pokropek A. Background in Tc-99m DTPA renography evaluated by the impact of its components on individual kidney glomerular filtration rate.Nucl Med Commun 1988; 9: 545–552.

    PubMed  Google Scholar 

  5. Peters AM. Brown H, Cosgriff P Measurement of the extravascular concentration of renal agents following intravenous bolus injection.Nucl Med Commun 1994; 15: 66–72.

    PubMed  Google Scholar 

  6. Britton KE. Brown NJG, Bluhm MM. Xenon washout.Lancet 1971; 11: 822–823.

    Google Scholar 

  7. Wilkinson SP, Smith IK, Clarke M et al. Intrarenal distribution of plasma flow in cirrhosis as measured by transit renography.Clin Sci Mol Med 1977; 52: 469–475.

    PubMed  Google Scholar 

  8. Wilkinson SP, Bernardi M, Pearce PC et al. Validation of “transit renography” for the determination of the intrarenal distribution of plasma flow.Clin Sci Mol Med 1978; 54: 277–283.

    Google Scholar 

  9. Gruenewald SM, Nimmon CC, Nawaz MK, Britton KE. A noninvasive y camera technique for the measurement of intrarenal flow distribution in man.Clin Sci 1981; 61:365–369.

    Google Scholar 

  10. Britton KE, Nawaz MK, Nimmon CC et al. Total and intrarenal flow distribution in healthy subjects.Nephron 1986; 43: 265–273.

    PubMed  Google Scholar 

  11. Al-Nahhas AM, Nimmon CC, Britton KE et al. The effect of ramipril, a new angiotensin converting enzyme inhibitor, on cortical nephron flow and effective renal plasma flow in patients with essential hypertension.Nephron 1990; 54: 47–52.

    PubMed  Google Scholar 

  12. Britton KE. Essential hypertension: a disorder of cortical nephron control? Lancet 1981; II: 900–902.

    Google Scholar 

  13. Britton KE, Cage PE, Carson ER. A “bootstrap” model of the renal medulla.Postgrad Med J 1976; 52: 279–284.

    PubMed  Google Scholar 

  14. Guyton AC, Coleman TG, Cowley AW et al. A systems analysis approach to understanding long-range arterial blood pressure control and hypertension. Circ Res 1974; 35: 159–176.

    Google Scholar 

  15. Chengazi VU, Nimmon CC, Britton KE. Forward projection analysis and image surgery: an approach to quantitative tomography. International Symposium in Tomography in Nuclear Medicine 1995. Vienna: International Atomic Energy Agency, 1996.

    Google Scholar 

  16. Al-Nahhas A, Marcus AT, Bomanji J et al. Validity of the mean parenchymal transit time as a screening test for the detection of functional renal artery stenosis in hypertensive patients.Nucl Med Commun 1989; 10: 807–815.

    PubMed  Google Scholar 

  17. Gruenewald SM, Stewart JH, Crocker EF. Advances in diagnosis and treatment of renovascular hypertension.Med J Aust 1983;1:572–574.

    PubMed  Google Scholar 

  18. Britton KE. Renin and renal autoregulation. Lancet 1968; 11: 239–241.

    Google Scholar 

  19. Fourman J, Moffat D. The blood vessels of the kidney. Oxford: Blackwell, 1971.

    Google Scholar 

  20. Datseris IE, Bomanji JB, Brown EA et al. Captopril renal scintigraphy in patients with hypertension and chronic renal failure. J Nucl Med 1994; 35: 251–254.

    PubMed  Google Scholar 

  21. Datseris IE, Sonmezoglu K, Siraj QH et al. Predictive value of captopril transit renography in essential hypertension and diabetic nephropathy. Nucl Med Commun 1995; 16: 62–64.

    Google Scholar 

  22. Britton KE, Bomanji J, Datseris I et al. Captopril renal radionuclide studies in diabetic nephropathy. In: Nally JV Taylor A, eds. Radioisotopes in nephrology. Santa Fe Symposium 1995, Blaufox, Md. New York: Society of Nuclear Medicine, 1996.

    Google Scholar 

  23. Gruenewald SM, Antico gnV Fawdry R, Collins L. Quantitative renography in patient follow-up treatment of renal artery stenosis.Proc R Aust Coll Phys (Golden Jubilee meeting) 1988: A156.

  24. Britton KE, Nimmon CC, Whitfield HN et al. Obstructive nephropathy: successful evaluation with radionuclides.Lancet 1979;1:905–907.

    PubMed  Google Scholar 

  25. Britton KE, Nawaz MK, Whitfield HN et al. Obstructive nephropathy: comparison between parenchymal transit time index and frusemide diuresis.Br J Urol 1987; 59: 127–132.

    PubMed  Google Scholar 

  26. Britton KE. Radionuclide studies. In: Whitfield HW, Hendry WF, eds.Textbook of genitourinary surgery, vol 1. Edinburgh: Churchill Livingstone; 1985: 67–103.

    Google Scholar 

  27. O'Reilly PH, Testa HJ, Lawson RS, Farrar DJ, Charlton Edwards E. Diuresis renography in equivocal urinary tract obstruction. Br J Urol 1978; 50: 76–80.

    PubMed  Google Scholar 

  28. Bahar RH, Kouris K, Sabha et al. Value of quantitative analysis of radionuclide diuretic renogram in predicting the outcome of surgery in chronic schistosomal obstructive uropathy. In: Dynamic functional studies in nuclear medicine in developing countries. Vienna: International Atomic Energy Agency; 1989: 141–146.

    Google Scholar 

  29. Chaiwatanarat T, Padhy AK, Bomanji JB et al. Validation of renal output efficiency as an objective quantitative parameter in the evaluation of upper urinary tract obstruction. J Nucl Med 1993; 34: 845–848.

    PubMed  Google Scholar 

  30. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 1983; 3: 1–7.

    PubMed  Google Scholar 

  31. Rutland MD. A single injection technique for subtraction of blood background in131I-hippuran renograms. Br J Radiol 1979;52:134–137.

    PubMed  Google Scholar 

  32. Peters AM. Graphical analysis of dynamic data: the PatlakRutland plot.Nucl Med Commun 1994; 15: 669–672.

    PubMed  Google Scholar 

  33. Britton KE, Brown NJG. The value in obstructive nephropathy of the hippuran output curve derived by computer analysis of the renogram. In: The proceedings of the international symposium on dynamic renal studies with radioisotopes in medicine. Vienna: International Atomic Energy Agency; 1971: 263–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britton, K.E., Brown, N.J.G. & Nimmon, C.C. Clinical renography: 25 years on. Eur J Nucl Med 23, 1541–1546 (1996). https://doi.org/10.1007/BF01254483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254483

Key words

Navigation