Advertisement

Journal of Intelligent and Robotic Systems

, Volume 14, Issue 1, pp 105–130 | Cite as

Calculation of repeatable control strategies for kinematically redundant manipulators

  • Rodney G. Roberts
  • Anthony A. Maciejewski
Article

Abstract

A kinematically redundant manipulator is a robotic system that has more than the minimum number of degrees of freedom that are required for a specified task. Due to this additional freedom, control strategies may yield solutions which are not repeatable in the sense that the manipulator may not return to its initial joint configuration for closed end-effector paths. This paper compares two methods for choosing repeatable control strategies which minimize their distance from a nonrepeatable inverse with desirable properties. The first method minimizes the integral norm of the difference of the desired inverse and a repeatable inverse while the second method minimizes the distance of the null vectors associated with the desired and the repeatable inverses. It is then shown how the two techniques can be combined in order to obtain the advantages of both methods. As an illustrative example the pseudoinverse is approximated in a region of the joint space for a seven-degree-of-freedom manipulator.

Key words

Kinematically redundant repeatability pseudoinverse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K. and Angeles, J.: Kinematic inversion of robotic manipulators in the presence of redundancies,Int. J. Robotics Res. 8(6) (1989), 80–97.Google Scholar
  2. 2.
    Baillieul, J.: Kinematic programming alternatives for redundant manipulators, inProc. IEEE Int. Conf. Robotics Automat., St. Louis, MO, March 25–28, 1985, pp. 722–728.Google Scholar
  3. 3.
    Baker, D. R. and Wampler, C. W., II: On the inverse kinematics of redundant manipulators,Int. J. Robotics Res. 7(2) (1988), 3–21.Google Scholar
  4. 4.
    Chiacchio, P., Chiaverini, S., Sciavicco, L. and Siciliano, B.: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy,Int. J. Robotics Res. 10(4) (1991), 410–425.Google Scholar
  5. 5.
    Colbaugh, R. and Glass, K.: On controlling robots with redundancy,Robotics and Computer Integrated Manufacturing 9(2) (1992), 121–135.Google Scholar
  6. 6.
    Egeland, O.: Task-space tracking with redundant manipulators,IEEE J. Robotics Automat. RA-3(5) (1987), 471–475.Google Scholar
  7. 7.
    Klein, C. A. and Huang, C. H.: Review of pseudoinverse control for use with kinematically redundant manipulators,IEEE Trans. Syst., Man Cyber. SMC-13(3) (1983), 245–250.Google Scholar
  8. 8.
    Podhorodeski, R. P., Goldenberg, A. A. and Fenton, R. G.: Resolving redundant manipulator joint rates and identifying special arm configurations using Jacobian null-space bases,IEEE Trans. Robotics Automat. 7(5) (1991), 607–618.Google Scholar
  9. 9.
    Roberts, R. G. and Maciejewski, A. A.: Nearest optimal repeatable control strategies for kinematically redundant manipulators,IEEE Trans. Robotics Automat. 8(3) (1992), 327–337.Google Scholar
  10. 10.
    Roberts, R. G. and Maciejewski, A. A.: Repeatable generalized inverse control strategies for kinematically redundant manipulators,IEEE Trans. Automat. Contr. 38(5) (1993), 689–699.Google Scholar
  11. 11.
    Seraji, H.: Configuration control of redundant manipulators: Theory and implementation,IEEE Trans. Robotics Automat. 5(4) (1989), 472–490.Google Scholar
  12. 12.
    Shamir, T.: Remarks on some dynamical problems of controlling redundant manipulators,IEEE Trans. Automat. Contr. 35(3) (1990), 341–344.Google Scholar
  13. 13.
    Shamir, T. and Yomdin, Y.: Repeatability of redundant manipulators: Mathematical solution of the problem,IEEE Trans. Automat. Contr. 33(11) (1988), 1004–1009.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Rodney G. Roberts
    • 1
  • Anthony A. Maciejewski
    • 1
  1. 1.School of Electrical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations