Skip to main content
Log in

d-Amphetamine-induced increase in catecholamine synthesis in the corpus striatum of the rat: Persistence of the effect after tolerance

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The effect ofd-amphetamine onin vivo catecholamine synthesis in four regions of rat brain was determined by measuring the accumulation of dopa after inhibition of dopa decarboxylase. In doses up to 2.5 mg/kg,d-amphetamine caused dose-dependent increases in striatal dopa accumulation to a maximum of 280% of control; further increases in dose resulted in smaller effects until 10 mg/kgd-amphetamine was not significantly different from control.d-Amphetamine did not alter dopa accumulation in telencephalon, in diencephalon-mesencephalon, or in pons-medulla oblongata.d-Amphetamine did not affect either dopamine levels in striatum or NE levels in pons-medulla oblongata; at high doses,d-amphetamine did reduce norepinephrine levels in telencephalon and in diencephalon-mesencephalon.

Daily administration of pre-session but not of post-sessiond-amphetamine produced tolerance to the effects ofd-amphetamine on milk consumption in rats. The ability ofd-amphetamine to increase striatal catecholamine synthesis was not altered by the development of tolerance tod-amphetamine. These results suggest that tolerance tod-amphetamine is not related to its effect on catecholamine synthesis but instead occurs via changes in aspects of catecholamine metabolism other than synthesis via change in catecholamine release, reuptake, or receptor sensitivity, or via changes in non-catecholaminergic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baez, L. A. Role of catecholamines in the anoretic effect of amphetamine in rats. Psychopharmacologia35, 91–98 (1974).

    PubMed  Google Scholar 

  • Bertler, A., Carlsson, A., Rosengren, E. A method for the fluorometric determination of adrenalin and noradrenalin in tissues. Acta Physiol. Scand.44, 273–292 (1958).

    PubMed  Google Scholar 

  • Besson, M.-J., Cheramy, A., Feltz, P., Glowinski, J. Dopamine: Spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res.32, 407–424 (1971).

    PubMed  Google Scholar 

  • Bunney, B. S., Aghajanian, G. K. d-Amphetamine-induced inhibition of central dopaminergic neurons: Mediation by a striatal-nigral feedback pathway. Science192, 391–393 (1976).

    PubMed  Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H. Aghajanian, G. K. Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther.185, 560–571 (1973).

    PubMed  Google Scholar 

  • Campbell, J. C., Seiden, L. S. Performance influence on the development of tolerance to amphetamine. Pharmacol. Biochem. Behav.1, 703–708 (1973).

    PubMed  Google Scholar 

  • Carlsson, A. Receptor-mediated control of dopamine metabolism. In: Pre-and Postsynaptic Receptors (Usdin, E., Bunney, W. E., eds.), pp. 49–66. New York: Marcel Dekker, Inc. 1975.

    Google Scholar 

  • Carlsson, A. Amphetamine and brain catecholamines. In: Amphetamines and Related Compounds. Proceedings of the Mario Negri Institute for Pharmacological Research (Costa, E., Garattini, S., eds.), pp. 289–300. New York: Raven Press. 1970.

    Google Scholar 

  • Carlsson, A., Davis, J. N., Kehr, W., Lindqvist, M., Atack, C. V. Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brainin vivo using an inhibitor of the aromatic amino acid decarboxylase. Arch. Pharmacol.275, 153–168 (1972).

    Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M. Short-term control of tyrosine hydroxylase. In: Neuropsychopharmacology of Monoamines and their Regulatory Enzymes (Usdin, E., ed.), pp. 135–142. New York: Raven Press. 1974.

    Google Scholar 

  • Carlsson, A., Lindqvist, M. In vivo decarboxylation of methyldopa and methylmeta-tyrosine. Acta Physiol. Scand.54, 87–94 (1962).

    PubMed  Google Scholar 

  • Carlton, P. L., Wolgin, D. L. Contingent tolerance to the anorexigenic effects of amphetamine. Physiol. Behav.I, 221–223 (1971).

    Google Scholar 

  • Chiel, H., Yehuda, S., Wurtman, R. J. Development of tolerance in rats to the hypothermie effects ofd-amphetamine and apomorphine. Life Sci.14, 483–488 (1974).

    PubMed  Google Scholar 

  • Chiueh, C. C., Moore, K. E. d-Amphetamine-induced release of “newly” synthesized and “stored” dopamine from the caudate nucleusin vivo. J. Pharmacol. Exp. Ther.192, 642–653 (1975).

    PubMed  Google Scholar 

  • Christiansen, J., Squires, R. F. Antagonistic effects of apomorphine and haloperidol on rat striatal synaptosomal tyrosine hydroxylase. J. Pharm. Pharmacol.26, 367–369 (1974).

    PubMed  Google Scholar 

  • Costa, E., Groppetti, A. Biosynthesis and storage of catecholamines in tissues of rats injected with various doses of (+)-amphetamine. In: Amphetamines and Related Compounds. Proceedings of the Mario Negri Institute for Pharmacological Research (Costa, E., Garattini, S., eds.), pp. 217–230. New York: Raven Press. 1970.

    Google Scholar 

  • Costa, E., Groppetti, A., Naimzada, M. K. Effects of amphetamine on the turnover rate of brain catecholamines and motor activity. Br. J. Pharmacol.44, 742–751 (1972).

    PubMed  Google Scholar 

  • Costa, E., Guidotti, A., Zivkovic, B. Short- and long-term regulation of tyrosine hydroxylase. In: Neuropsychopharmacology of Monoamines and their Regulatory Enzymes (Usdin, E., ed.), pp. 161–176. New York: Raven Press. 1974.

    Google Scholar 

  • Fibiger, H. C., McGeer, E. G. Effects of acute and chronic methamphetamine treatment on tyrosine hydroxylase activity in brain and adrenal medulla. Eur. J. Pharmacol.16, 176–180 (1971).

    PubMed  Google Scholar 

  • Fuxe, K., Ungerstedt, U. Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In: Amphetamines and Related Compounds. Proceedings of the Mario Negri Institute for Pharmacological Research (Costa, E., Garattini, S., eds.), pp. 257–288. New York: Raven Press. 1970.

    Google Scholar 

  • Glowinski, J., Axelrod, J., Iversen, L. L. Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J. Pharmacol. Exp. Ther.153, 30–41 (1966).

    PubMed  Google Scholar 

  • Glowinski, J., Iversen, L. L. Regional studies of catecholamines in the rat brain. I. The disposition of3H-norepinephrine,3H-dopamine, and3H-dopa in various regions of the brain. J. Neurochem.13, 655–669 (1966).

    PubMed  Google Scholar 

  • Goldstein, A., Aronow, L., Kalman, S. M. Principles of Drug Action: The Basis of Pharmacology. New York: J. Wiley. 1974.

    Google Scholar 

  • Goldstein, M., Freedman, L. S., Backstrom, T. The inhibition of catecholamine biosynthesis by apomorphine. J. Pharm. Pharmacol.22, 715–717 (1970).

    PubMed  Google Scholar 

  • Harris, J. E., Baldessarini, R. J. Amphetamine-induced inhibition of tyrosine hydroxylation in homogenates of rat corpus striatum. Neuropharmacol.14, 457–471 (1975).

    Google Scholar 

  • Heffner, T. G., Zigmond, M. J., Strieker, E. M. Effects of dopaminergic agonists and antagonists on feeding in intact and 6-hydroxydopamine-treated rats. J. Pharmacol. Exp. Ther.201, 386–399 (1977).

    PubMed  Google Scholar 

  • Hulme, E. C., Hill, R., North, M., Kirby, M. R. Effects of chronic administration of drugs which modify neurotransmitter reuptake, storage and turnover on levels of tyrosine and tryptophan hydroxylase in rat brain. Biochem. Pharmacol.23, 1393–1404 (1974).

    PubMed  Google Scholar 

  • Javoy, F., Agid, Y., Bouvet, D., Glowinski, J. In vivo estimation of tyrosine hydroxylation in the dopaminergic terminals of the rat neostriatum. J. Pharm. Pharmacol.26, 179–185 (1974).

    PubMed  Google Scholar 

  • Jori, A., Bernardi, D. Further studies on the increase of striatal homovanillic acid induced by amphetamine and fenfluramine. Eur. J. Pharmacol.19, 276–280 (1972).

    PubMed  Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M. A method for the determination of 3, 4-dihydroxyphenylalanine (Dopa) in brain. Arch. Pharmacol.274, 273–280 (1972 a).

    Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C. Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol.24, 744–747 (1972 b).

    PubMed  Google Scholar 

  • Kehr, W., Speckenbach, W., Zimmermann, R. Interaction of haloperidol and γ-butyrolactone with (+)-amphetamine-induced changes in monoamine synthesis and metabolism in rat brain. J. Neural Transm.40, 129–147 (1977).

    PubMed  Google Scholar 

  • Koda, L. Y., Gibb, J. W. Adrenal and striatal tyrosine hydroxylase activity after methamphetamine. J. Pharmacol. Exp. Ther.185, 42–48 (1973).

    PubMed  Google Scholar 

  • Kogan, F. J., Nichols, W. K., Gibb, J. W. Influence of methamphetamine on nigral and striatal tyrosine hydroxylase activity and on striatal dopamine levels. Eur. J. Pharmacol.36, 363–371 (1976).

    PubMed  Google Scholar 

  • Leonard, B. E., Shallice, S. A. Some neurochemical effects of amphetamine, methlyamphetamine, and p-bromomethylamphetamine in the rat. Brit. J. Pharmacol.44, 198–222 (1971).

    Google Scholar 

  • Lewander, T. Effects of chronic amphetamine intoxication on the accumulation in the rat brain of labelled catecholamines synthesized from circulating tyrosine-14C and dopa-3H. Arch. Pharmacol.271, 211–233 (1971).

    Google Scholar 

  • Lewander, T. Urinary excretion and tissue levels of catecholamines during chronic amphetamine intoxication. Psychopharmacologia13, 394–407 (1968).

    PubMed  Google Scholar 

  • Mac Phail, R. C., Seiden, L. S. Effects of intermittent and repeated administration ofd-amphetamine on restricted water intake in rats. J. Pharmacol. Exp. Ther.197, 303–310 (1976).

    PubMed  Google Scholar 

  • Magour, S., Coper, H., Fähndrich, C. H. The effects of chronic treatment withd-amphetamine on food intake, body weight, locomotor activity, and subcellular distribution of the drug in rat brain. Psychopharmacologia34, 45–54 (1974).

    PubMed  Google Scholar 

  • McKenzie, G. M., Szerb, J. C. The effect of dihydroxyphenylalanine, pheniprazine, and dextroamphetamine on thein vivo release of dopamine from the caudate nucleus. J. Pharmacol. Exp. Ther.162, 302–308 (1968).

    PubMed  Google Scholar 

  • McLean, J. R., McCartney, M. Effect ofd-amphetamine on rat brain nor-adrenaline and serotonin. Proc. Soc. Exp. Bio. Med.107, 77–79 (1961).

    Google Scholar 

  • Moore, K. E., Carr, L. A., Dominic, J. A. Functional significance of amphetamine-induced release of brain catecholamines. In: Amphetamines and Related Compounds. Proceedings of the Mario Negri Institute for Pharmacological Research (Costa, E., Garattini, S., eds.), pp. 371–384. New York: Raven Press. 1970.

    Google Scholar 

  • Nybäck, H., Schubert, J., Sedvall, G. Effect of apomorphine and pimozide on synthesis and turnover of labelled catecholamines in mouse brain. J. Pharm. Pharmacol.22, 622–624 (1970).

    PubMed  Google Scholar 

  • Pearl, R. G., Seiden, L. S. The existence of tolerance to and cross-tolerance betweend-amphetamine and methylphenidate for their effects on milk consumption and on differential-reinforcement-of-low-rate performance in the rat. J. Pharmacol. Exp. Ther.198, 635–647 (1976).

    PubMed  Google Scholar 

  • Riffee, W. H., Gerald, M. C. Determination of endogenous concentrations of norepinephrine and dopamine and their rates of synthesis in a single mouse brain: biphasic effects of (+)-amphetamine. Arch. Int. Pharmacodyn.219, 70–78 (1976).

    PubMed  Google Scholar 

  • Roos, B. E. Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J. Pharm. Pharmacol.21, 263–264 (1969).

    PubMed  Google Scholar 

  • Roth, R. H., Walters, J. R., Morgenroth, V. H., III. Effects of alterations in impulse flow on transmitter metabolism in central dopaminergic neurons. In: Neuropsychopharmacology of Monoamines and their Regulatory Enzymes (Usdin, E., ed.), pp. 369–384. New York: Raven Press. 1974.

    Google Scholar 

  • Schanberg, S. M., Cook, J. D. Effects of acute and chronic methamphetamine on brain norepinephrine metabolism. In: Current Concepts on Amphetamine Abuse (Ellinwood, E., Cohen, S., eds.), pp. 87–95. Washington, D.C.: U.S. Government Printing Office. 1972.

    Google Scholar 

  • Scheel-Krüger, J. Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain. Eur. J. Pharmacol.14, 47–59 (1971).

    PubMed  Google Scholar 

  • Schoenfeld, R. L., Seiden, L. S. Effect ofα-methyltyrosine on operant behavior and brain catecholamine levels. J. Pharmacol. Exp. Ther.167, 319–327 (1966).

    Google Scholar 

  • Schuster, C. R., Dockens, W. S., Woods, J. H. Behavioral variables affecting the development of amphetamine tolerance. Psychopharmacologia9, 170–182 (1966).

    PubMed  Google Scholar 

  • Siegel, S. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. 1956.

    Google Scholar 

  • Sparber, S. B., Tilson, H. A. The releasability of central norepinephrine and serotonin by peripherally administeredd-amphetamine before and after tolerance. Life Sci.11, 1059–1067 (1972).

    Google Scholar 

  • Stein, L. Self-stimulation of the brain and the central stimulant action of amphetamine. Fed. Proc.23, 836–850 (1964).

    PubMed  Google Scholar 

  • Tilson, H. A., Sparber, S. B. The effects ofd- andl-amphetamine on fixed-interval and fixed-ratio behavior in tolerant and non-tolerant rats. J. Pharmacol. Exp. Ther.187, 372–379 (1973).

    PubMed  Google Scholar 

  • Walters, J. R., Roth, R. H. Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Pharmacol. Exp. Ther.191, 82–91 (1974).

    PubMed  Google Scholar 

  • Weiner, N. Regulation of norepinephrine biosynthesis. Ann. Rev. Pharmacol.10, 273–290 (1970).

    PubMed  Google Scholar 

  • Weissman, A., Koe, B. K., Tenen, S. S. Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. Exp. Ther.151, 339–352 (1966).

    PubMed  Google Scholar 

  • Winer, B. J. Statistical Principles in Experimental Design. New York: McGraw-Hill. 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by U.S. Public Health Service National Institute of Mental Health Grant MH-011191-12.

Supported by Training Grant USPHS 2 TO5 GM 01939-07 (MSTP).

Supported by Research Career Development Award 5 KO2 MH-10562-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearl, R.G., Seiden, L.S. d-Amphetamine-induced increase in catecholamine synthesis in the corpus striatum of the rat: Persistence of the effect after tolerance. J. Neural Transmission 44, 21–38 (1979). https://doi.org/10.1007/BF01252699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01252699

Keywords

Navigation