Skip to main content
Log in

The electrical property of matter, the trigger mechanism controlling cell growth

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

It has been shown that many of the so-called “unknown” causes in biological reactions can be explained through the basic laws of physics, namely that all matter is electrical and that the life principle is due to this electrical state; that the electron shift which continues automatically and ceaselessly in every particle of matter is the factor which releases the energy, as it is attracted or repulsed by the positive or negative charges of the atom, thereby producing the biochemical formations of metabolism.

The two underlying “organizers” in all forms of matter are polarity-consisting of a positive charge at one end and a negative charge at the other in every atom, groups of atoms or molecules and organs; and secondly, oxidation-reduction potential which regulates the electromotive force for the definite level of energy production at the appropriate instant.

This principle has been applied in the case of various experiments designated as “unknown causes” in the literature. They include the “organizer principle in Biology,” why eggs become fertilized, tissue culturesin vitro andvivo and reconstitution of sponge cells from dissociated cells, the basic causes of abnormal growth of cells including cancer cells, and finally some conclusions concerning DNA and RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barron, E. S. G., 1930: The catalytic effect of dyes on the oxygen consumption of living cells. J. Gen. Physiol.13, 483–494.

    Article  Google Scholar 

  • Baumberger, P. J., 1939: The relation between the oxidation-reduction potential and the oxygen consumption of yeast cell suspensions. Cold Spring Harbor Symp.VII, 195–215.

    Google Scholar 

  • Briggs, R. T., and T. J. King, 1957: Changes in the nuclei of differentiating endoderm cells. J. Morphology100, 269–312.

    Google Scholar 

  • Brooks, M. M., 1943: Oxidation-reduction potentials of developing marine eggs. Biol. Bull.84, 164–177.

    Google Scholar 

  • —, 1946: The mechanism of fertilization of eggs. Growth10, 391–410.

    Google Scholar 

  • —, 1959: Negative redox potentials as the limiting factor for exogastrulation in sea urchins. Protoplasma51, 131–153.

    Google Scholar 

  • —, 1960: Negative oxidation-reduction potentials resulting from the use of auxins in plants and tobacco smoke on animal cells. Protoplasma51, 620–631.

    Google Scholar 

  • —, 1961: Nicotine as a redox-reducing reagent. Protoplasma53, 212–219.

    Google Scholar 

  • Bullock, T. H., 1957: Physiological triggers. Symp. Soc. Gen. Physiology. The Ronald Press Co., New York.

    Google Scholar 

  • Child, C. M., 1946: Organizers in development and the organizer concept. Physiological Zoology19, 89–148.

    Google Scholar 

  • —, 1953: Exogastrulation and differential cell dissociation. Physiological Zoology26, 28–58.

    Google Scholar 

  • Colwin, A., 1949: Effect of lithium chloride and calcium-low sea water on the development of the otolith ofMogula Manhattensis. Biol. Bull.97, 236.

    Google Scholar 

  • Crane, R. K., 1960: Intestinal absorption of sugars. Physiological Reviews40, 789–825.

    PubMed  Google Scholar 

  • Dan, K., and K. Okasaki, 1956: Role of the secondary mesenchyme cells in the formation of the primitive gut in sea urchin eggs. Biol. Bull.110, 29–42.

    Google Scholar 

  • Driesch, H., 1892: Der Wert der beiden ersten Furchungszellen in der Echinodermen Entwicklung. Zschr. f. wissenschaftliche Zool.53, 160–184.

    Google Scholar 

  • —, 1929: The Science and Philosophy of the Organism. A. and. C. Black Ltd., London.

    Google Scholar 

  • Dulbecco, R., and M. Vogt, 1954: Plaque formation and isolation of pure lines of polyomyelitis viruses. J. Exper. Med.99, 167–182.

    Google Scholar 

  • Farinella-Ferruza, N., 1955: Lo sviluppo embrionaleAscidie dopo trattamento con LiCl. Pubbl. Staz. Zool. Napoli26, 42–54.

    Google Scholar 

  • Genevois, L., 1928: Coloration vitale et respiration. Protoplasma4, 67–87.

    Google Scholar 

  • Gurwitsch, A., 1932: Die mitogenetische Strahlung. Springer: Berlin.

    Google Scholar 

  • Heinrichsen, H., 1839: Ideen über das wechselseitige Elektricitätsverhältniss zwischen dem thierischen Organismus und der äussern Natur. Verlag von Ludwig Schumann: Leipzig.

    Google Scholar 

  • Karnowski, M. L., 1962: Metabolic basis of phagocytic activity. Physiol. Reviews42, 143–168.

    Google Scholar 

  • King, T. J., and R. Briggs, 1956: Serial transplantation of embryonic nuclei. Cold Spring Harbor Symp. Quantitative Biol.21, 271–290.

    Google Scholar 

  • Loeb, J., 1906: Dynamics of living matter. Columbia University Press. MacMillan Co., New York.

    Google Scholar 

  • Moscana, A., 1959: Patterns and mechanisms of tissue reconstruction from dissociated cells. Eighteenth Growth Symposium. 45–70. The Ronald Press, New York.

    Google Scholar 

  • —, and M. Moscana, 1952: Developing cell systems and their control. J. Anatomy86, 287–501.

    Google Scholar 

  • Nieuwkoop, P., 1953: The influence of the lithium ion on the development of the eggs ofAscidia malaca. Pubbl. Staz. Zool. Napoli24, 101–141.

    Google Scholar 

  • Ranzi, S., and G. Ferreri, 1944: Effeto di LiCl sullo svilippo embrionale delle Ascidia. Boll. Soc. Ital. Sper.19, 10–12.

    Google Scholar 

  • Reverberi, G., and A. Minganti, 1946: Le Potenze dei Quartetti animale e vegetative isolatidiAscidiella aspersa. Pubbl. Staz. Zool. Napoli20, 135–151.

    Google Scholar 

  • Reverberi, G., and A. Minganti, 1947: La distribuzione delle potenze nel germe di Ascidie. Pubbl. Staz. Zool. Napoli21, 199–252.

    Google Scholar 

  • —, 1961: The embryology of Asoidians. Advances in Morphogenesis.1, 55–101. Academic Press, New York.

    Google Scholar 

  • Sebrell, W. H. Jr., 1960: Some problems in food toxicology. Federation Proceedings19, Part II, 31–32.

    PubMed  Google Scholar 

  • Smith, M. J. H., 1958: Effects of salicylate on the metabolic activity of the small intestine of the rat. Amer. J. Physiology193, 29.

    Google Scholar 

  • Steward, F. C., and H. Y. Mohan Ram, 1961: Determining factors in cell growth. Advances in Morphogenesis. Academic Press1, 189–261. New York.

    Google Scholar 

  • Warburg, O., 1910: Über die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Zschr. physiol. Chem.66, 305–340.

    Google Scholar 

  • —, J. Gawehn, A. W. Geissler and S. Lorenz, 1960: Über die Umwandlung des Embryonal-Stoffwechseis in Krebs. Hoppe-Seylers Zschr. physiol. Chemie321, 252–257.

    Google Scholar 

  • Weiss, P., 1945: Role of colloidal exudates in tissue organization, J. Exper. Zool.100, 353–386.

    Google Scholar 

  • —, 1958: Cell contact. Intern. Review of Cytology7, 391–422.

    Google Scholar 

  • Wilde, C. E., 1961: The differentiation of vertebrate pigment cells. Advances in Morphogenesis1, 267–300. Academic Press, New York.

    Google Scholar 

  • Wolfe, E., 1954: Potentialités et Affinités des Tissues. Soc. Zoologique de France79, 357–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, M.M. The electrical property of matter, the trigger mechanism controlling cell growth. Protoplasma 57, 144–157 (1963). https://doi.org/10.1007/BF01252050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01252050

Keywords

Navigation