Skip to main content

Advertisement

Log in

Kunststoffkompatibilitätsstudien

Studies on compatibility between plastics and blood

  • Published:
Langenbecks Archiv für Chirurgie Aims and scope Submit manuscript

Summary

Studying the compatibility of plastics and blood, at the one hand analyses were undertaken on artificial hearts implanted in calves, at the other hand in vitro techniques were gained by working for the purpose of testing several (different) fabrics simultaneously. Concerning the in vivo examinations there were made observations and documentations using light microscopy of the plastics’ surfaces. Concerning thein vitro-methods there were tested blood and plasma samples in drops and in cavities of the following plastic materials with the special respect of their moisteness, expansion and their relation to the surfaces during longer incubation: Silastic, Silastic combined with Dacron-Velour, Silastic with Dacron-Flock, Silastic with graphite, Teflon, Hydron as well as PVC. At least, several fabrics were tested after having seeded them with cultivated fibroblasts looking at the ability of forming “endothelium-like membranes” at the surfaces of those plastics.

As to the techniques used in these experiments there were taken light microscopic methods — as told —, as well as phase contrast and stereomicroscopic techniques, moreover there were used immunologic and tissue culture methods.

The findings of artificial hearts implanted, indicated layers of fibrin and thrombi in endo- and pericardial areas, especially in the part of atrium and in the region of vascular origins of the right heart. — In the firstin vitro series, Teflon showed the best repelling effect against blood and plasma. — In the secondin vitro row a deposit of fibrinogen (and fibrin), in some cases also of albumin and immunoglobulins on the plastics' surfaces and a diminution of fibrinogen in the plasma samples incubated on plastics could be seen. — In the experiments with fibroblasts in contact with fabrics' surfaces, the smooth Silastic preparation proved to be the best one for stimulating an endothelial layer.

Zuaammenjmsung

Zum Studium der Verträglichkeit von Kunststoffen mit Blut wurden einerseits Untersuchungen an implantierten Kunststoffherzen vorgenommen, andererseitsin vitro-Methoden erarbeitet, die es gestatten, mehrere, verschiedene Kunststoffproben gleichzeitig zu prüfen. Bei denin vivo-Untersuchungen handelte es sich im wesentlichen um Beobachtungen und lichtmikroskopische Dokumentationen der Oberflächen eingesetzter Kunststofforgane. Bei denin vitro—Tests wurden aufgetropfte sowie in Vertiefungen eingebrachte Blut— und Plasmaproben an folgenden Kunststoffsorten auf ihre Benetzungefähigkeit, Ausbreitungstendenz, ihr Verhalten nach längerer Inkubation untersucht: Silastic, Silastic mit Dacron-Velour, Silastic mit Dacron-Flock, Silastic mit Graphit, Teflon, Hydron sowie PVC. Schließlich wurden verschiedene Kunststoffe in Kontakt mit kultivierten Fibroblasten auf deren Beschichtungsfähigkeit bzw. „Endothelbildung” auf den Oberflächen dieser Kunststoffe geprüft.

An Untersuchungstechniken wurden neben den genannten lichtmikroskopischen einige zusätzliche Mikroskopiermethoden, wie Phasenkontrasttechnik und Stereomikroskopie, verwendet, ferner immunologische sowie Gewebekulturmethoden.

Die Befunde an implantierten Kunststoffherzen wiesen vor allem auf Fibrinund Thrombenauflagerungen, endo- sowie perikardial, hin, wobei die Bereiche der Vorhöfe und insbesondere der Gefäßabgänge des rechten Herzens besonders betroffen waren. — In der erstenin vitro Testreihe zeigte Teflon den stärksten Abstoßungseffekt gegenüber Blut und Plasma. — In der zweiten in vitro-Testreihe konnte an den verwendeten Kunststoffoberflächen ein Niederschlag von Fibrinogen (sowie Fibrin), in einigen Fällen aber auch von Albumin und Immuglobulinen, im inkubierten Plasma eine Reduzierung des Fibrinogens, festgestellt werden. — Bei den Versuchen mit Fibroblasten in Kontakt mit Kunststoffoberflächen erwies sich die glatte Silasticpräparation für die Entwicklung eines endothelialen Überzuges als am günstigsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Atsumi, K., Sakurai, Y., Atsumi, E., Narausawa, S., Kunisawa, S., Okikura, M., Kimoto, S.: Application of specially cross-linked natural rubber for artificial internal organs. Trans. Amer. Soc. artif. intern. Org.9, 324 (1963)

    Google Scholar 

  2. Autian, J.: Toxicologic aspects of implants. J. biomed. Mater. Res.1, 433 (1967)

    PubMed  Google Scholar 

  3. Baier, R. E., Loeb, G. I., Wallace, G. T.: Role of an artificial boundary in modifying blood proteins. Fed. Proc. Conf. on Mechan. Surface and Gas Layer Effects on Moving Blood, Fed. Amer. Soc. exper. Biol., Bethesda/Md. 1971, pp. 1523

    Google Scholar 

  4. Blackshear, P. L., Dorman, F. D., Steinbach, J. H.: Some mechanical effects that influence hemolysis. Trans. Amer. Soc. artif. intern. Org.11, 112 (1965)

    Google Scholar 

  5. Blackshear, P. L., Dorman, F. D., Steinbach, J. H., Maybach, E., Singh, A., Collingham, R. S.: Shear wall interaction and hemolysis. Trans. Amer. Soc. artif. intern. Org.12, 113 (1966)

    Google Scholar 

  6. Bruck, S. D.: Polymeric materials: Current status of biocompatibility. Symposium on Polymeric Materials in Artificial Organs, California Institute of Technology, Pasadena, Calif., Nov. 17–19, 1971

    Google Scholar 

  7. Bruck, S. D.: Biomaterials in medical devices. Trans. Amer. Soc. artif. intern. Org.18, 1 (1972)

    Google Scholar 

  8. Bruck, S. D.: Macromolecular aspects of biocompatible materials - a review. J. biomed. Mater. Res.6, 173 (1972)

    PubMed  Google Scholar 

  9. Burk, M. F., Gardner, R. E.: Survival of red blood cells in dogs following total body perfusion. Surg. Forum10, 578 (1959)

    Google Scholar 

  10. Coons, A. H., Kaplan, M. H.: Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody. J. exp. Med.91, 1 (1950)

    PubMed  Google Scholar 

  11. Dutton, R. C.: Microstructure of initial thrombus formation on foreign materials. J. biomed. Mater. Res.3, 13 (1969)

    PubMed  Google Scholar 

  12. Dutton, R. C., Baier, R. E., Dedrick, R. L., Bowman, R. L.: Initial thrombus formation on foreign surfaces. Trans. Amer. Soc. artif. intern. Org.14, 57 (1968)

    Google Scholar 

  13. Dyck, M. F., Winters, P. R.: Lytic effects of plastic surfaces on erythrocytes. J. biomed. Mater. Res.5, 207 (1971)

    Google Scholar 

  14. Friedman, L. I., Liem, H., Grabowski, E. F., Leonard, E. F., McCord, C. W.: Inconsequentiality of surface properties for initial platelet adhesion. Trans. Amer. Soc. artif. intern. Org.14, 63 (1970)

    Google Scholar 

  15. Galletti, P.: Laboratory experience with 24 hour partial heart-lung bypass. J. Surg. Res.5, 97 (1965)

    Google Scholar 

  16. Götz, H.: Probleme der Grenzfläche Kunststoff/Blut. Langenbecks Arch. Chir.329, 359 (1971)

    PubMed  Google Scholar 

  17. Götz, H.: Immunologische Plasmaprotein-Diagnostik. Berlin-New York: de Gruyter 1973

    Google Scholar 

  18. Gott, V. L.: The causes and prevention of thrombosis on prosthetic materials. J. Surg. Res.6, 274 (1966)

    PubMed  Google Scholar 

  19. Gott, V. L., Ramos, M. D., Najjar, F. B., Allen, J. L., Becker, K. E.: The in vivo screening of potential thromboresistant materials. Proc. Artif. Heart Program Conference, National Heart Institute 1969, pp. 181

  20. Grabar, P., Williams, C. A.: Méthode immuno-électrophorétique d'analyse de mélanges de substances antigéniques. Biochim. biophys. Acta (Amst.)17, 67 (1955)

    Google Scholar 

  21. Guess, W. L., Haberman, S.: Toxicity profiles of vinyl and polyolefinic plastics and their additives. J. biomed. Mater. Res.2, 213 (1968)

    Google Scholar 

  22. Halbert. S. P., Anken, M., Ushakoff, A. E.: Studies on the compatibility of various plastics with the proteins in human plasma. Proc. Artif. Heart Program Conference1969, pp. 223

  23. Halbert, S. P., Ushakoff, A. E., Anken, M.: Compatibility of various plastics with human plasma proteins. J. biomed. Mater. Res.4, 549 (1970)

    PubMed  Google Scholar 

  24. Hastings, G. W.: Makromolekulare Chemie and Medizin. Angew. Chem.82, 367 (1970)

    Google Scholar 

  25. Hershgold, E. J., Kwan-Gett, C. W., Kawai, J., Rowley, K.: Hemostasis, coagulation and the total artificial heart. Trans. Amer. Soc. artif. intern. Org. 18, (1972)

  26. Hopf, M., Brinsfield, D., Martinez, F., Galletti, P.: Laboratory experiences with longlasting perfusion. Trans. Amer. Soc. artif. intern. Org.8, 57 (1962)

    Google Scholar 

  27. Hueper, W. C.: Arch. Path.67, 689 (1959); zit. nach Hastings [21]

    Google Scholar 

  28. Jaeger, R. J., Rubin, R. J.: Plasticizers from plastic devices: Extraction, metabolism, and accumulation by biological systems. Science170, 460 (1970)

    PubMed  Google Scholar 

  29. Kusserow, B. K., Larrow, R., Nichols, J.: Analysis and measurement of the effects of materials on blood leukocytes, erythrocytes and platelets. PB 195452, Annual Report, October 1969

  30. Kusserow, B., Mechanic, B. M., Collins, F., Clapp, J.: Changes observed in blood corpuscles after prolonged perfusion with two types of blood pumps. Trans. Amer. Soc. artif. intern. Org.11, 122 (1965)

    Google Scholar 

  31. Lafarge, C. G., Carr, J. G., Coleman, S. J., Bernhard, W. F.: Hemodynamic studies during prolonged mechanical circulatory support. Trans. Amer. Soc. artif. intern. Org.18, 186 (1972)

    Google Scholar 

  32. Leininger, R. I.: Polymers as surgical implants. Critical Reviews in Bioengineering, October 1972, p. 333

  33. Leininger, R. I., Mirkovitch, V., Peters, A., Hawks, W. A.: Changes in properties of plastics during implantation. Trans. Amer. Soc. artif. intern. Org.10, 320 (1964)

    Google Scholar 

  34. Mancini, G., Vaerman, J. P., Carbonara, A. 0., Heremans, J. F.: A single radialdiffusion-method for the immunological quantitation of proteins. Prot. biol. Fluids Proc. 11th Coll., Bruges 1963, Amsterdam: Elsevier 1964

    Google Scholar 

  35. Mason, R. G., Rodman, N. F., Scarborough, D. E., Idenberry, L. D.: Blood compatibility of some polymeric and nonpolymeric materials. Proc. Artif. Heart Program Conference 1969, pp. 193

  36. Mirkovitch, V.: Bioelectric phenomena, thrombosis and plastics. A review of current knowledge. Cleveland Clin. Quart30, 241 (1963)

    PubMed  Google Scholar 

  37. Oppenheimer, B. S., Oppenheimer, E. T., Stout, A. P.: Proc. Soc. exp. Biol. (N.Y.)67, 33 (1948); zit. nach Hastings [21]

    Google Scholar 

  38. Oppenheimer, B. S., Oppenheimer, E. T., Danishefsky, I., Stout, A. P., Eirich, F.: Further studies of polymers as carcinogenic agents in animals. Cancer Res.15, 333 (1955)

    PubMed  Google Scholar 

  39. Petschek, H., Adamis, D., Kantrowitz, A. R.: Stagnation flow thrombus formation. Trans. Amer. Soc. artif. intern. Org.14, 256 (1968)

    Google Scholar 

  40. Pirofsky, B., Sutherland, D., Starr, A., Griswold, H.: Hemolytic anemia complicating aortic-valve surgery. New Engl. J. Med.272, 235 (1965)

    PubMed  Google Scholar 

  41. Ross, J., Greenfield, L. J., Bowman, R. L., Morrow, A. G.: The chemical structure and surface properties of certain synthetic polymers and their relationship to thrombosis. In: Prosthetic valves for cardiac surgery, p. 212; Springfield/Ill.: Thomas 1961

    Google Scholar 

  42. Salyer, I. 0., Blardinelli, A. J., Ball, G. L. III, Weesner, W. E., Gott, V. L., Ramos, M. D., Furuse, A.: New blood-compatible polymers for artificial heart applications. J. biomed. Mater. Res. Symp.1, 105 (1971)

    Google Scholar 

  43. Salzman, E. W.: Role of platelets in blood-surface interactions. In: Federation Proceedings of Conference on Mechanical Surface and Gas Layer Effects on Moving Blood, Fed. Amer. Soo. Exper. Biol. Bethesda/Md. 1971, pp. 1503

    Google Scholar 

  44. Sawyer, P. N., Pate, J. W.: Bio-electric phenomena as an etiologic factor in intravascular thrombosis. Amer. J. Physiol.175, 103 (1953)

    PubMed  Google Scholar 

  45. Scales, J. T.: Tissue reaction to synthetic materials. Proc. roy. Soc. Med.46, 647 (1953)

    PubMed  Google Scholar 

  46. Schwartz, S. L.: Prevention and production of thrombosis by alterations in electric environment. Surg. Gynec. Obstet.108, 533 (1959)

    PubMed  Google Scholar 

  47. Turnes, F. C.: J. nat. Cancer Inst.2, 81 (1941); zit. nach Hastings [21]

    Google Scholar 

  48. Valiathan, S., Whiffen, J. D., Weldon, C. S., Gott, V. L.: Endocardial prosthetic junction thrombosis. — An experimental study of the etiological factors. Trans. Amer. Soc. artif. intern. Org. 12, 174 (1966)

    Google Scholar 

  49. Warren, R., McCombs, H. L.: Morphologic studies on plastic arterial prostheses in humans. Ann. Surg.161, 73 (1965)

    PubMed  Google Scholar 

  50. Weing, W. J.: Device for measuring blood compatibility. J. biomed. Mater. Res.2, 179 (1968)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, H. Kunststoffkompatibilitätsstudien. Langenbecks Arch Chiv 335, 95–126 (1974). https://doi.org/10.1007/BF01251632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01251632

Keywords

Navigation