Skip to main content
Log in

A comparative immunocytochemical and immunochemical analysis of glycoproteins synthesized in the bovine subcommissural organ

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

To extend our previous immunochemical investigations in the chick embryo (Karoumi et al., 1990 b), we raised antibodies in the rabbit against crude extracts of the subcommissural organ (SCO) of the bovine. The antiserum labeled A99 was absorbed by crude brain extracts and its specificity was tested by different techniques.

Comparison of crude SCO and cerebral hemispheres supernatants after immunoblotting allow to identify specific 98, 60, 52, 42, 38, and 32 kDa polypeptides in the SCO profile.

Immunoaffinity chromatography on A99 immunoadsorbent of crude SCO, cerebral hemispheres (CH) and classical ependyma (CE) supernatants was followed by electrophoretical analysis and electrotransfer. Concanavalin A (Con A) and wheat germ agglutinin (WGA) labeling procedures demonstrated the presence of numerous glycopeptides specific of crude SCO supernatants and having an apparent molecular weight ranging from 240 to 50kDa. In the CH-eluted fraction, 50 and 52 kDa glycopeptides were revealed by Con A and WGA, whereas in the CE-immunopurified fraction no band was visualized.

The similarity of the chick embryo and bovine electrophoretic pattern corresponding to the SCO eluted fractions speaks in favour of a high degree of conservation of the SCO secretory material and an evolutionary stability of the antigens recognized by A99IgG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alric M, Cheyvialle D, Renaud M (1986) Cross-blot and Cross-dot system: a high performance system for the detection of antigen-antibody complexes on nitrocellulose. Anal Biochem 154: 328–334

    Google Scholar 

  • Bhavanandan VP, Katlic AW (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem 254: 4000–4008

    PubMed  Google Scholar 

  • Cumming R, Burgoyne RD (1985) The immunoblotting technique for the characterization of antibodies used in central nervous system immunocytochemistry. Technique in Immunocytochemistry 3: 56–78

    Google Scholar 

  • Cummings RD, Kornfeld S (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilizedPhaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem 257: 11230–11234

    PubMed  Google Scholar 

  • Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117: 41–55

    PubMed  Google Scholar 

  • Diederen JHB, Vullings HGB, Legerstee-Oostveen GG (1987) Autoradiographic study of the production of secretory material by the subcommissural organ of frogs (Rana temporaria) after injection of several radioactive precursors with special reference to the glycosylation and turnover rate of the secretory material. Cell Tissue Res 248: 215–222

    PubMed  Google Scholar 

  • Glass WF, Briggs RC, Hnilica LS (1981) Use of lectins for detection of electrophoretically separated glycoproteins transferred on nitrocellulose sheets. Anal Biochem 115: 219–224

    PubMed  Google Scholar 

  • Goldstein IJ, Reichert CM, Miaski A (1974) Interaction of concanavalin A with model substrates. Ann NY Acad Sci 234: 283–286

    PubMed  Google Scholar 

  • Hawkes R (1982) Identification of concanavalin A-binding proteins after sodium dodecyl sulfate-gel electrophoresis and protein blotting. Anal Biochem 123: 143–146

    PubMed  Google Scholar 

  • Hess J, Sterba G (1973) Studies concerning the function of the complex subcommissural organ-liquor fibre: the binding ability of the liquor fibre to pyrocatechin derivatives and its functional aspects. Brain Res 58: 303–312

    PubMed  Google Scholar 

  • Hofer HO, Meinel W, Erhardt H, Wolter A (1984) Preliminary electronmicroscopical observations on the ampulla caudalis and the discharge of the material of Reissner's fibre into the capillary system of the terminal part of Ammocoetes (Agnathi). Gegenbaurs Morphol Jahrb (Leipzig) 130: 77–100

    Google Scholar 

  • Karoumi A, Meiniel R, Croisille Y, Belin MF, Meiniel A (1990a) Glycoprotein synthesis in the subcommissural organ of the chick embryo. I. An ontogenetical study using specific antibodies. J Neural Transm (Gen Sect) 79: 141–153

    Google Scholar 

  • Karoumi A, Croisille Y, Croisille F, Meiniel R, Belin MF, Meiniel A (1990b) Glycoprotein synthesis in the subcommissural organ of the chick embryo. II. An immunochemical study. J Neural Transm (Gen Sect) 80: 203–212

    Google Scholar 

  • Karoumi A (1990) Mise en evidence et caractérisation par des méthodes immunologiques de sécrétions glycoprotéiques au niveau du diencéphale dorsal. Etude particulière d'une structure circumventriculaire: l'organe sous-commissural du boeuf adulte et de l'embryon de poulet. Thèse Faculté des Sciences Université Blaise Pascal, Clermont-Ferrand, France

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond) 227: 680–685

    Google Scholar 

  • Leonhardt H (1980) Ependym and Circumventriculäre Organe. In: Oksche A, Vollrath L (Hrsg) Neuroglia I. Springer, Berlin Heidelberg New York (Handbuch der mikroskopischen Anatomie des Menschen, Bd 4, S 117–665)

    Google Scholar 

  • Meiniel R, Meiniel A (1985) Analysis of the secretions of the subcommissural organs of several vertebrate species by use of fluorescent lectins. Cell Tissue Res 239: 359–364

    PubMed  Google Scholar 

  • Meiniel R, Molat JL, Meiniel A (1986) Concanavalin A-binding glycoproteins in the subcommissural and the pineal organ of the sheep (Ovis aries). A fluorescence-microscopic and electrophoretic study. Cell Tissue Res 245: 605–613

    PubMed  Google Scholar 

  • Meiniel A, Molat JL, Meiniel R (1988a) Complex-type glycoproteins synthesized in the subcommissural organ of mammals. Light- and electron-microscopic investigations by use of lectins. Cell Tissue Res 253: 383–395

    PubMed  Google Scholar 

  • Meiniel R, Duchier N, Meiniel A (1988b) Monoclonal antibody C1B8A8 recognizes a ventricular secretory product elaborated in the bovine subcommissural organ. Cell Tissue Res 254: 611–615

    PubMed  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neuro Visc Rel [Suppl] 2: 111–139

    Google Scholar 

  • Rodríguez EM, Oksche A, Hein S, Rodríguez S, Yulis R (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237: 427–441

    PubMed  Google Scholar 

  • Rodríguez EM, Herrera H, Peruzzo B, Rodríguez S, Hein S, Oksche A (1986) Light- and electron-microscopic lectin histochemistry and immunohistochemistry of the subcommissural organ: evidence for processing of the secretory material. Cell Tissue Res 243: 545–559

    PubMed  Google Scholar 

  • Rodríguez EM, Hein S, Rodríguez S, Herrera H, Peruzzo B, Nualart F, Oksche A (1987) Secretory products of the subcommissural organ. In: Scharrer B, Korf HW, Hartwig HG (eds) Functional morphology of neuroendocrine systems. Evolutionary and environmental aspects. Springer, Berlin Heidelberg New York Tokyo, pp 189–201

    Google Scholar 

  • Sterba G (1967) Incorporation of sulphur-35 into the subcommissural organ and Reissner's fibre inCyprinus carpio. Nature (Lond) 216: 504

    Google Scholar 

  • Sterba G, Kiessig C, Naumann W, Petter H (1982) The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res 226: 427–439

    PubMed  Google Scholar 

  • Sterba G, Lösecke W, Kiessig C (1987) The secretion of the subcommissural organ. Wiss Z Karl-Marx Univ Leipzig Math Naturwiss R 36: 9–16

    Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen antibody complex (horseradish peroxydase antihorseradish peroxydase) and its use in identification of spirochetes. J Histochem Cytochem 18: 315–333

    PubMed  Google Scholar 

  • Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354

    PubMed  Google Scholar 

  • Ziegels J (1976) The vertebrate subcommissural organ. A structural and functional review. Arch Biol (Bruxelles) 87: 429–476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karoumi, A., Meiniel, R., Belin, M.F. et al. A comparative immunocytochemical and immunochemical analysis of glycoproteins synthesized in the bovine subcommissural organ. J. Neural Transmission 86, 205–216 (1991). https://doi.org/10.1007/BF01250706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250706

Keywords

Navigation