Skip to main content
Log in

Effect of quipazine on brain stem monoamine neurons histofluorescence studies

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Using two fluorescence histochemical methods, formaldehyde-induced fluorescence and sucrose-potassiumphosphate-glyoxylic acid fluorescence (SPG), we studied the effect of 5-hydroxytryptamine receptor stimulation by quipazine (2-[-piperazinyl]quinoline maleate) on monoamine fluorescence in the brain stem of rats. It was found that quipazine in a dose of 5 mg/kg i.p., after 60 min, decreased noradrenaline fluorescence intensity in noradrenergic neurons of the subcoeruleus area and diminished the density of catecholamine terminals visualized in the central part of the dorsal raphé nucleus.

In the principallocus coeruleus, the intensity of fluorescence in nerve cells was not changed using either method, but with the SPG procedure, diffuse fluorescence outside cell bodies was observed after quipazine.

In dorsal raphé neurons, a slight increase in 5-hydroxytryptamine fluorescence intensity was observed.

The results obtained indicate that quipazine, apart from its effect on 5-hydroxytryptamine neurons, may also affect certain noradrenergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Björklund, A., Lindvall, O., Svensson, L. A. Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie32, 113–131 (1972).

    Google Scholar 

  • Briggs, I: Actions and interactions of iontophoretically applied quipazine and monoamines on brain stem neurons. Exp. Brain Res.23, Suppl. 52 (1975).

  • Corne, S. J., Pickering, R. W., Warner, B. T. A method for assessing the effect of drugs on central action of 5-hydroxytryptamine. Br. J. Pharmacol.20, 106–120 (1963).

    Google Scholar 

  • De la Torre, J. C., Surgeon, J. W. A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry49, 81–93 (1976).

    Google Scholar 

  • Drucker-Colin, R. R., Rojas-Ramirez, J. A., Rodriguez, R. Serotonin-like electroencephalographic and behavioral effects of quipazine. Fed. Proc.31, 321 (1972).

    Google Scholar 

  • Falck, B. Observation on the possibilities of the cellular localization of monoamines by the fluorescence method. Acta physiol. scand.56, Suppl. 197, 1–25 (1962).

    Google Scholar 

  • Falck, B., Hillarp, N. A., Thieme, G., Torp, A. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354 (1962).

    Google Scholar 

  • Fuxe, K. Distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand.64, Suppl. 247, 37–85 (1965).

    Google Scholar 

  • Fuxe, K., Goldstein, M., Hökfelt, T., Joh, T. H. Immunohistochemical localization of dopamine-β-hydroxylase in the peripheral and central nervous system. Res. Comm. chem. Pathol. Pharmacol.1, 627–636 (1970).

    Google Scholar 

  • Grabowska, M., Antkiewicz, L., Michaluk, J. The influence of quipazine on the turnover rate of serotonin. Biochem. Pharmacol.23, 3211–3212 (1974 a).

    Google Scholar 

  • Grabowska, M., Antkiewicz, L., Michaluk, J. A possible interaction of quipazine with central dopamine structures. J. Pharm. Pharmacol.26, 74–76 (1974 b).

    Google Scholar 

  • Grzanna, R., Morrison, J. J., Coyle, J. T., Molliver, M. E. The immunohistochemical demonstration of noradrenergic neurons in the rat brain: the use of homologous antiserum to dopamine-β-hydroxylase. Neuroscience Letters4, 127–134 (1977).

    Google Scholar 

  • Hamon, M., Bourgoin, S., Enjalbert, A., Boskaert, J., Hery, F., Ternaux, J. P., Glowinski, J. The effect of quipazine on 5-HT metabolism in the rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol.294, 99–108 (1976).

    Google Scholar 

  • Hong, E., Sancillo, L. F., Vargas, R., Pardo, E. G. Similarities between the pharmacological actions of quipazine and serotonin. Europ. J. Pharmacol.6, 276–280 (1969).

    Google Scholar 

  • Jacoby, J. H., Howd, R. D., Levin, M. S., Wurtman, R. J. Mechanisms by which quipazine, a putative serotonin receptor agonist, alters brain 5-hydroxyindole metabolism. Neuropharmacology15, 529–534 (1976).

    Google Scholar 

  • Kopin, I. J., Palkovits, M., Kobayashi, R. M., Jacobowitz, D. M. Quantitative relationship of catecholamine content and histofluorescence in brain of rats. Brain Res.80, 229–235 (1974).

    Google Scholar 

  • Kostowski, W. Interactions between serotonergic and catecholaminergic systems in the rat brain. Pol. J. Pharmacol. Pharm.27, 15–24 (1975).

    Google Scholar 

  • Lidbrink, P., Jonsson, G. Semiquantitative estimation of formaldehydeinduced fluorescence of noradrenaline in central noradrenaline nerve terminals. J. Histochem. Cytochem.19, 747–757 (1971).

    Google Scholar 

  • Lidbrink, P., Corrodi, H., Fuxe, K., Olson, L. Barbiturates and meprobamate: decreases in catecholamine turnover of central dopamine and noradrenaline neuronal systems and the influence of immobilization stress. Brain Res.45, 507–524 (1972).

    Google Scholar 

  • Lindvall, O., Björklund, A. The organization of the ascending catecholamine neuron systems in the rat brain. Acta physiol. scand., Suppl. 412, 1–48 (1974).

    Google Scholar 

  • Malick, J. B., Doren, E., Barnett, A. Quipazine-induced head-twitch produced by serotonin receptor activation in mice. Fedn. Proc.34, 801 (1975).

    Google Scholar 

  • Olson, L., Fuxe, K. Further mapping out of central noradrenaline neuron systems: projections of the ‘subcoeruleus’ area. Brain Res.43, 289–295 (1972).

    Google Scholar 

  • Palkovits, M., Jacobowitz, D. M. Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J. comp. Neurol.157, 29–42 (1974).

    Google Scholar 

  • Pickel, V. M., Joh, T. H., Reis, D. J. A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Res.131, 197–214 (1977).

    Google Scholar 

  • Przegaliński, E., Zebrowska-Lupina, I., Wójcik, A., Kleinrok, Z. 5-methoxytryptamine-induced head twitches in rats. Pol. J. Pharmacol. Pharm.29, 255–261 (1977).

    Google Scholar 

  • Roizen, M. F., Jacobowitz, D. M. Studies in the origin of innervation of the noradrenergic area bordering on the nucleus raphé dorsalis. Brain Res.101, 561–568 (1976).

    Google Scholar 

  • Szydlowska, H., Kowalska, Z., Vetulani, J.: The influence of pharmacological agents on the accumulation of exogenic noradrenalin in nervous tissue cultivated in vitro. Folia Histochem. Cytochem.16 (1978), in press.

  • Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiol. scand., Suppl.367, 1–48 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smiałowska, M. Effect of quipazine on brain stem monoamine neurons histofluorescence studies. J. Neural Transmission 45, 139–148 (1979). https://doi.org/10.1007/BF01250089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250089

Keywords

Navigation