Skip to main content

Advertisement

Log in

Small size rubella virus antigens and soluble immune complexes: Analysis by the platelet aggregation technique

  • Published:
Archiv für die gesamte Virusforschung Aims and scope Submit manuscript

Summary

In rubella-infected BHK-21/13 S cell cultures new virus particles were first detected by infectivity and HA tests at 8–10 hours. Virus-specific antigen was demonstrated as early as 8 hours by PA, 12 hours by CF and immunofluorescence and 18 hours by immunodiffusion tests. Soluble (S) rubella antigen was first detectable in the medium at 15 hours using PA.

Rubella S antigen sedimented at 3.5–4 S. When mixed with 7 S rubella antibody it formed soluble immune complexes that could be detected by PA either directly or after addition of antigen or antibody. The size of the complexes, 10 to 25 S, depended on the antigen/antibody ratio.

Purified high titer rubella virus had both PA and CF antigen activity. The ratios of HA/PA/CF antigen titers were about 1000/5/1 with convalescent rubella sera. The serum titers with virion antigen were higher than those with S antigen.

Degradation of virus particles with Tween 80 and ether or nonionic detergents gave components with biological activity (HA, PA, CF). Degradation of virus altered its PA and CF box titration pattern to that typical of rubella S antigen. Red cell absorption removed 99% of the HA activity of degraded virus, but a large fraction of the PA and CF antigenicity remained unabsorbed. Absorption of S antigen with erythrocytes did not detectably decrease PA or CF antigenicity.

Nonidet P 40-treated virus was separated in glycerol gradients into a slowly sedimenting fraction with HA, PA and CF activity and a 150 S ribonucleoprotein fraction with PA and CF activity. The sedimentation of HA subunits was very heterogeneous in the absence of detergents. Sedimentation was more homogeneous and recovery of antigen better in gradients containing 0.1% Nonidet P 40 and 0.5 M urea. Detergent-degraded virus was fractionated by combination of red cell absorption and sedimentation into a slow (or) light fraction, with some HA and PA activity, a sharp peak of PA at 3 to 4 S and a fast fraction with most HA and some PA activity. It appears that the major determinant of rubella S antigen is a subunit of the rubella virus envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furukawa, T., A. Vaheri, andS. A. Plotkin: Growth of rubella virus in BHK-21 cells. III. Production of complement-fixing antigens. Proc. Soc. exp. Biol. (N.Y.)125, 1098–1102 (1967).

    Google Scholar 

  2. Schmidt, N. J., E. H. Lennette, andJ. Dennis: Density gradient centrifugation studies on rubella complement-fixing antigens. J. Immunol.99, 399–405 (1967).

    Google Scholar 

  3. Schmidt, N. J., E. H. Lennette, P. S. Gee, andJ. Dennis: Physical and Immunologic properties of rubella antigens. J. Immunol.100, 851–857 (1968).

    Google Scholar 

  4. Schmidt, N. J., andB. Styk: Immunodiffusion reactions with rubella antigens. J. Immunol.101, 210–216 (1968).

    Google Scholar 

  5. Salmi, A.: Acta path, microbiol. scand.76, 271–278 (1969).

    Google Scholar 

  6. Le Bouvier, G. L.: Physiochemical characteristics of rubella antigens theta and iota. Nature (Lond.)221, 78–79 (1969).

    Google Scholar 

  7. Penttinen, K., andG. Myllylä: Interaction of human blood platelets, viruses and antibodies. I. Platelet aggregation test with microequipment. Ann. Med. exp. Fenn.46, 188–192 (1968).

    Google Scholar 

  8. Myllylä, G., A. Vaheri, T. Vesikari, andK. Penttinen: Interaction between human blood platelets, viruses and antibodies. IV. Clin. exp. Immunol.4, 323–332 (1969).

    Google Scholar 

  9. Penttinen, K., P. Saikku, G. Myllylä, M. Brummer-Korvenkontio, andN. Oker-Blom: The platelet aggregation test in group B arbovirus infections. J. Hyg. (Lond.)68, 71–76 (1970).

    Google Scholar 

  10. Penttinen, K., L. Kääriäinen, andG. Myllylä: Cytomegalovirus antibody assay by platelet aggregation. Arch. ges. Virusforsch.29, 189–194 (1970).

    Google Scholar 

  11. Palosuo, T., K. Penttinen, andG. Myllylä: Platelet aggregation by herpes simplex antigen-antibody complexes. Arch. ges. Virusforsch.30, 11–17 (1970).

    Google Scholar 

  12. Vaheri, A., W. D. Sedwick, S. A. Plotkin, andR. Maes: Cytopathic effect of rubella virus in BHK-21 cells and growth to high titers in suspension culture. Virology27, 239–241 (1965).

    Google Scholar 

  13. Vaheri, A., W. D. Sedwick, andS. A. Plotkin: Growth of rubella virus in BHK-21 cells. I. Production, assay, and adaptation of virus. Proc. Soc. exp. Biol. (N.Y.)125, 1086–1092 (1967).

    Google Scholar 

  14. Vaheri, A., C-H. von Bonsdorff, T. Vesikari, T. Hovi, andP. Väänänen: Purification of rubella virus particles. J. gen. Virol.5, 39–46 (1969).

    Google Scholar 

  15. Hovi, T., andA. Vaheri: Infectivity and some physiochemical characteristics of rubella virus ribonucleic acid. Virology,42, 1–8 (1970).

    Google Scholar 

  16. Vesikari, T., A. Vaheri, andP. Leinikki: Antibody response to rubella virion (V) and soluble (S) antigens in rubella infection and following vaccination with live attenuated rubella virus. Arch. ges. Virusforschung35, 25–37 (1971).

    Google Scholar 

  17. Murphy, F. A., andP. H. Coleman: California group arboviruses: immunodiffusion studies. J. Immunol.99, 276–284 (1967).

    Google Scholar 

  18. Vesikari, T., andA. Vaheri: Rubella: a method for rapid diagnosis of a recent infection by demonstration of the IgM antibodies. Brit. med. J.1, 221–223 (1968).

    Google Scholar 

  19. McEwen, C. R.: Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal. Biochem.20, 114–119 (1967).

    Google Scholar 

  20. Norrby, E.: Separation of measles virus components by equilibrium centrifugation in CsCl gradients. I. Crude and Tween and ether treated concentrated tissue culture material. Arch. ges. Virusforsch.14, 306–318 (1964).

    Google Scholar 

  21. Holmes, I. H., andM. F. Warburton: Is rubella an arbovirus? Lancet2, 1233–1236 (1967).

    Google Scholar 

  22. von Bonsdorff, C-H., andA. Vaheri: Growth of rubella virus in BHK-21 cells: Electron microscopy of morphogenesis. J. gen. Virol.5, 47–51 (1969).

    Google Scholar 

  23. Vaheri, A., T. Vesikari, K. Penttinen, andG. Myllylä: Symposia series in immunobiological standardization international symposium on rubella vaccines, London 1968. Soluble rubella antigens, platelet aggregation and post-rubella thrombocytopenia.11, 107–108 Basel/New York:Karger, 1969.

    Google Scholar 

  24. Penttinen, K., G. Myllylä, andA. Vaheri: Soluble antigen-antibody complexes and platelet aggregation. Acta path. microbiol. scand.77, 309–317 (1969).

    Google Scholar 

  25. Laufs, R., andR. Thomssen: Eigenschaften eines mit Tween 80 und Äthyläther behandelten Rubellavirus-Hämagglutinins. Arch. ges. Virusforsch.24, 164–180 (1968).

    Google Scholar 

  26. Webster, R. G., andR. W. Darlington: Disruption of myxoviruses with Tween 20 and isolation of biologically active hemagglutinin and neuraminidase subunits. J. Virol.4, 182–187 (1969).

    Google Scholar 

  27. Numazaki, Y., andD. T. Karzon: Soluble antigen of measles virus. J. Immunol.97, 470–476 (1966).

    Google Scholar 

  28. Neurath, A. R., T. J. Wiktor, andH. Koprowski: Density gradient centrifugation studies on rabies virus. J. Bact.92, 102–106 (1966).

    Google Scholar 

  29. Vaheri, A., A. Salmi, andT. Vesikari: Antigens of rubella virions and virus specific soluble components in rubella infected BHK-21 cells. Scand. J. clin. Lab. Invest.25, Suppl. 113, 104 (1970).

    Google Scholar 

  30. Furukawa, T., S. Plotkin, D. Sedwick, andM. Profeta: Haemagglutinin of rubella virus. Nature (Lond.)215, 172–173 (1967).

    Google Scholar 

  31. Suganuma, M., S. Kohno, M. Kohase, andY. Shimizu: Occurence of rubella virus lacking hemagglutinating activity. Arch. ges. Virusforsch.29, 263–266 (1970).

    Google Scholar 

  32. Singer, S. J., andD. H. Campbell: Physical chemical studies on soluble antigen-antibody complexes. I. The valence of precipitating rabbit antibody. J. Amer. chem. Soc.74, 1794–1802 (1952).

    Google Scholar 

  33. Almeida, J. D., andA. P. Waterson: Immune complexes in hepatitis. Lancet2, 983–986 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaheri, A., Vesikari, T. Small size rubella virus antigens and soluble immune complexes: Analysis by the platelet aggregation technique. Archiv f Virusforschung 35, 10–24 (1971). https://doi.org/10.1007/BF01249748

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249748

Keywords

Navigation